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Kurzfassung
In der Industrieautomation müssen Endbenutzer oft kleinere Änderungen anSteuerungsprogrammen der Mashinen vornehmen. Diese Endbenutzer sindmeist Mashinenbediener, die wenig bis gar keine Programmierkompetenzhaben. Dennoh müssen sie in siherheitskritshe Steuerungsprogramme ein-greifen, bei denen Testläufe niht möglih sind.Der in dieser Arbeit beshriebene Ansatz wird basiert auf Veri�kation vonSteuerungsprogrammen. Mittels Veri�kation wird bewiesen, dass ein Softwa-resystem bestimmte Eigenshaften in jeder möglihen Ausführung einhält.Für die Veri�kation von Software ist es notwendig, die gewünshten Eigen-shaften der Software in Kontrakten zu beshreiben. Die Kontrakte, die indieser Arbeit verwendet werden, beshreiben gültige Aufru�olgen und Ein-shränkungen.Semanti Assistane - ein neues Konzept, das in dieser Arbeit vorgestelltwird - verwendet die Ergebnisse der Veri�kation, um Endbenutzern bei derProgrammierung zu helfen. Diese Hilfe umfasst interaktive Unterstützungbei Programmänderungen, Vorshläge gültiger Programmteile sowie Visua-lisierung von Zuständen von Mashinenkomponenten. Im Falle einer Verlet-zung der Kontrakte können automatishe Programmänderungen vorgeshla-gen werden, die die Programmfehler korrigieren.Veri�kation und Semanti Assistane wurden in die Entwiklungsumge-bung der domänenspezi�shen Sprahe Monao integriert. Fallstudien zei-gen, dass der Ansatz von Kontrakten und Semanti Assistane praktikabelist. Darüber hinaus wurde festgestellt, dass Einshränkungen auf MonaoSystemen unkompliziert gefunden werden können und die statishe Überprü-fung dieser Einshränkungen die Laufzeitressoure der Steuerungshardwareentlasten. iii
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Abstrat
In the �eld of industrial automation end users often have the task of makinghanges and small adaptations to ontrol programs of their mahines. Theseend users (mahine operators) usually lak software engineering expertise, yetthey have to intervene in safety-ritial, highly dependable systems where itis not possible to run any o�ine tests.Veri�ation is used to proof that spei� properties of software systemshold in every possible exeution of the system. This is in ontrast to testing,whih an only show that a property holds in a given situation with a de-�ned input. For software veri�ation it is neessary to formally desribe theseproperties in ontrats, ontaining possible all sequenes and onstraints onsystem states. Information of the intermediate steps of the veri�ation pro-ess are stored with the software implementation to be reused later.Semanti Assistane - a new onept introdued in this thesis - uses theresults of a veri�ation proess to give guidane to end-user programmers.This guidane ranges from interative assistane on valid routine alls tovisualization of program states in form of a shemati view of the mahine. Inase of a ontrat violation, it is possible to automatially generate programrepair proposals to eliminate the violation.Veri�ation and Semanti Assistane are integrated into the MonaoIDE, a system for reating ontrol programs with the domain-spei� lan-guageMonao. Case studies and evaluation results show that this approahis feasible for di�erent types of ontrol programs. Furthermore, we experi-ened that �nding onstraints of systems is unomplex and heking theseonstraints statially removes substantial runtime overhead.
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Chapter 1Introdution
This thesis presents onepts and tools supporting end-user programmingof industrial automation solutions. In industrial automation the end users,whih an be domain experts or less experiened operators at a mahine, oftenhave to make hanges to the ontrol programs of their mahine automationsolutions. Those people � while they need to intervene in safety-ritialsystems � usually lak software engineering expertiese. Moreover, they oftenhave to modify programs on a running mahine and make those hangese�etive without a hane to run o�ine tests or try the hanged program ina test environment.We have observed that in suh a setting onstraints on the operations aswell as dependenies between mahine omponents apply in an obvious andnatural way. Those are onstraints on valid sequenes of operations of ompo-nents and inter-dependenies between operations of omponents. Instead ofhaving these tait assumptions reside in the minds of end-user programmers,they should be formalized and used to onstrain end-user programmers soviolations annot our in the �rst plae.The work presented in this thesis adopts tehniques from formal interfaespei�ation [dAH01,Mey86℄, model heking [CGP99℄, and arti�ial intelli-gene [KM91℄ to make this support possible. Formal interfae spei�ationtehniques are used to speify the sequening onstraints of omponent alls,knowledge about state properties of omponents, as well as inter-omponentonstraints. Model heking and arti�ial intelligene tehniques are thenused to verify that a lient program obeys these spei�ations and onstraints.1



2 CHAPTER 1. INTRODUCTIONBased on these tehniques, we have introdued means to support endusers in programming, whih we all Semanti Assistane. This works similarto ode assist tehniques (Visual Studio IntelliSense, Elipse ontent assist,...) where programmers get suggestions of syntatially orret method allsbased on the urrent ode position. Semanti Assistane, however, is basedon semanti knowledge represented in omponent ontrats.1.1 Bakground and MotivationThe work is based on the domain-spei� language Monao [PHM06,PHWM07,PHS+08a℄ whih is desribed in Chapter 3 of this thesis.Monao (Modeling N otation for Automation Control) is a domain-spei� language for mahine automation programming. It allows program-ming the reative part of an automation solution. It therefore has languageonstruts to express mahine operation sequenes, has strong support fordealing with exeptional situations and allows parallel ativities. The behav-ioral model of Monao is lose to StateCharts [Har87℄, although it uses animperative, Pasal-like style of programming.The most essential statements in the Monao language are synhronousroutine alls whih exeute ontrol tasks, WAIT statements for implement-ing wait onditions, and the PARALLEL statement used to allow onurrentexeution of several ativities. Additionally, ON-handlers, an be used to im-plement reations to exeptional situations.An important language feature is the omponent-based approah, i.e.,omponents are modular units whih exlusively ommuniate over de�nedinterfaes. Strit orrespondene between the hardware omponents of themahine and the software omponents ontrolling the mahine parts is pur-sued. The interfae spei�ations in Monao onsist of (1) routines whihrepresent the ations and tasks that an be ful�lled by this omponent, and(2) funtions whih allow aessing state properties. That means, routinesspeify how a omponent an be ontrolled and funtions speify the feed-bak a omponent provides.Moreover, omponents are arranged in a hierarhial fashion of superor-dinate and subordinate omponents whih re�ets the hierarhial struture



1.2. OUTLINE OF OUR APPROACH 3of the real mahine and aounts for the hierarhial nature of ontrol tasks.Components that are the leaves of the omponent hierarhy are alled nativeomponents and are implemented in a native language of the ontrol mahine(e.g., C++) to interfae with the hardware or lower ontrol layers. Higher upin the hierarhy there are several oordination omponents whih oordinateand supervise the operations of their subomponents. Chapter 3 presents thelanguage Monao in more detail.End-user programming is typially performed at the topmost or higherontrol layers. End users are presented a so-alled "end-user window" whihprovides a limited view of the ontrol program. Typially, an end user isonly allowed to add some funtionality, reorder routine alls, add onditionalstatements, or hange some parameter settings.On the other side, there are onstraints and dependenies on the opera-tions of the omponents, whih must be enfored in any program. Althoughoften quite obvious (see Setion 8), it is hard or even impossible for endusers to follow these onstraints while they modify a program. So far, restri-tions and onstraints are heked in a separate program setion. However, theheks are done at runtime, often resulting in emergeny stops and expen-sive mahine downtimes. It is therefore highly desirable to have a means ofheking and enforing those onstraints and restritions already at ompiletime.1.2 Outline of our ApproahOur approah is based on the spei�ation of dynami ontrats for om-ponents, automata simulation, a knowledge dedution proess whih derivesknowledge about program properties at ode positions, and assistane teh-niques whih exploit this knowledge. The assistane tools give immediatefeedbak on ontrat and onstraint violations, generate proposals of validprogram hanges and present those to the end-user programmer. Addition-ally, the mahine state for a ertain loation in the ode an be visualizedat editing time, suh that the end-user programmer an get a better under-standing of a program.Figure 1.1 depits an overview of our approah. First, the valid behav-ior of the omponents is desribed in protool ontrats and onstraints (2),



4 CHAPTER 1. INTRODUCTION
ContratsConstraints
MonaoCode (1)Impl. Automaton

(2)Protool Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) ProposalRepair(6) Visualization(7)

Figure 1.1: Protool ontrats and the state mapping algorithm are thebasis for a variety of end-user guidane appliations.whih are translated into protool automata. Seond, the behavior of theomponent implementation is translated into implementation automata (1)ontaining ontrol �ow information as well as Boolean onditions a�etingthe ontrol �ow. Next, a state mapping algorithm (3) establishes a weaksimulation relation [Bie08℄ between the implementation automaton and theprotool automata of the subomponents. It assoiates state knowledge withstates of the automaton and updates this knowledge while heking the imple-mentation for ontrat violations. The resulting annotated implementationautomaton (4) is then used in di�erent end-user support systems as follows:� The IDE provides immediate feedbak about ontrat and onstraintviolations at the ode position in the editor.� Valid routine alls (5) to subomponents are proposed based on theontrats of the subomponents while observing onstraints.� Semanti program repair (6) gives proposals on how a program violatingontrats or onstraints an be hanged suh that the resulting programomplies with ontrats and onstraints.� Program state visualization (7) uses knowledge generated from thestate mapping algorithm to visualize the state of omponents at a er-tain loation in the ode.



1.3. PROJECT HISTORY 51.3 Projet HistoryThis work is part of the projet Monao of the Christian Doppler Lab-oratory for Automated Software Engineering1 at the Institute for SystemSoftware2 at the Johannes Kepler University, Linz, Austria3. The laboratorywas founded in February 2006, in ooperation with Keba AG, Austria4 andis funded by the Christian Doppler Forshungsgesellshaft, Austria5.The projet started in 2006 with the de�nition of a �rst version ofthe domain-spei� language Monao, a ompiler, and a runtime envi-ronment [Hur06℄, [PHM06℄. In July 2006 a seond version of the runtimeenvironment and a visual programming environment [PHWM07℄ has beenreated.In Deember 2006, �rst ideas aboutMonao ode veri�ation and usingontrats to guide end users emerged. We also worked on ompilers and run-time environments in C, the integration into the existing runtime of Keba,and on an end-user friendly UI on�guration tool based on variability mod-els [PHS+08a℄, [HW08℄. We started �rst experiments with ontrats and thedesription of the behavior of Monao omponents. In late 2007, prototypesof the ode veri�ation algorithm existed (yet without pre- and postondi-tions), in 2008, the missing pre- and postonditions as well as the programrepair funtionality were implemented [PHS+08℄. In 2009 program visual-ization support was added [Str09℄.1.4 Struture of the ThesisThis thesis is organized as follows: Chapter 2 reviews tehniques and toolswhih serve as bakground and motivation for our researh. Chapter 3presents the domain-spei� language Monao. Subsequent Chapters 4�6 explain the algorithms and data strutures used to abstrat fromMonaoode, verify it, and generate knowledge. Chapter 7 presents Semanti As-sistane tools based on the results of the veri�ation proess. The tools are1http://ase.jku.at2http://ssw.jku.at3http://www.jku.at4http://www.keba.at5http://www.dg.a.at

http://ase.jku.at
http://ssw.jku.at
http://www.jku.at
http://www.keba.at
http://www.cdg.ac.at


6 CHAPTER 1. INTRODUCTIONused to guide end users. In ase of ontrat violations they help �nding validprogram repair strategies. A state dedution proess is used for a design-timeprogram visualization tool. Case studies in Chapter 8 demonstrate the appli-ability of the presented approah to realisti problems. Chapter 9 disussesrelated projets on veri�ation of omponent-based systems, desription ofomponent behavior, program repair, and program visualization. Finally,Chapter 10 onludes the thesis with a summary of the most signi�antparts and a summary of the ontributions.



Chapter 2State of the Art
”Beware of bugs in the above code;

I have only proved it correct,

not tried it.”- Donald KnuthThis hapter provides a brief overview over the state of the art of the top-is whih form the bakground of this work. Setion 2.1 introdues ode om-pletion systems urrently available for popular development environments.Setion 2.2 reviews formal methods, model heking, and propositional sat-is�ability. The last setion introdues the topi of belief revision and beliefupdate.2.1 Code CompletionSoure ode text editors in modern integrated development environments(IDEs) give programmers versatile support in performing their tasks. Besidessyntax highlighting, IDEs also provide users with suggestions and informa-tion related to the urrent ontext. This information is either displayed asan overview over the urrent ontext (e.g., the Outline view in the ElipseIDE) or as syntax-direted ode ompletion proposals that pop up while theprogrammer types ode.While these popup menus are named di�erently in their respetive IDEs7



8 CHAPTER 2. STATE OF THE ART(e.g., Content Assist in Elipse, IntelliSense in Mirosoft Visual Studio) theyall have similar funtionality: Proposing valid ode (e.g., lass members) usingmeta data (syntax tree), re�etion or heuristis based on the urrent ontext.Mirosoft IntelliSenseMirosoft®IntelliSense is the ode ompletion faility of Mirosoft VisualStudio®. It uses .NET re�etion and the introspetion failities of COM toestablish a database of symbols and sopes, whih is onsulted when the userenters ode in the editor. Syntatially suitable symbols (lass names, methodnames, �eld names, variable names, et.) are then presented in a drop-downbox and help to �nd elements available in the sope of the ontext.Elipse Content AssistSimilar to Mirosoft's ode ompletion implementation, the Elipse JDT(Java Development Tools) provide a faility alled Content Assist [AL04℄.Content Assist takes the guesswork out of oding by helping the program-mer to� �nd a given type� �nd a given �eld or method of an objet� enter method parameter valuesAdditionally, Elipse provides ontextual information about the urrent�le in the so-alled Outline view.Produtivity ToolsFor Mirosoft Visual Studio there exist many third-party add-ins whih en-hane the apabilities of the built-in IntelliSense by providing a riher set ofheuristis to �nd the elements that may be needed in a spei� ontext. Asan example, JetBrains ReSharper (http://www.jetbrains.om/resharper) pro-vides advaned ode ompletion whih proposes symbols that, for example,meet the expeted type of an assignment.

http://www.jetbrains.com/resharper


2.2. FORMAL METHODS 9ShortomingsAll the produtivity tools mentioned above provide ode ompletion andode proposals based on the loal, syntati ontext of the editing positionin the ode. This ontext is searhed for information about the stati programstruture onsisting of variables and member delarations.While this loality makes the approahes appliable to a wide variety ofsenarios, they fail to take into aount state information (semanti informa-tion) and information about omponent behavior. For example, after typinga variable name and a dot the tools infer the type of the variable and suggestall methods that an be applied to this variable. However, they fail takinginto aount whether a suggested method all would be semantially orretat the urrent position, i.e., whether the all would be legal in the sequeneof method alls that is de�ned by the ontrat of the variable's type.2.2 Formal MethodsThe term formal methods desribes tehniques for the spei�ation, synthesisand veri�ation of hardware and software systems. Figure 2.1 shows a bigpiture of formal methods:Formal Spei�ation. Formal spei�ation languages abstratly desribewhat an implementation should do. These desriptions (models) on-tain information about the states of a system and the operationswhih ause the system to make transitions to other states. Well-known spei�ation languages are abstrat state mahines (ASM )[GKOT00℄, the vienna development method spei�ation language(VDM-SL) [ISO96a℄, the Z notation [ASM80℄, and temporal logis(see Setion 2.2.2).Formal Synthesis. Formal synthesis is the translation of a spei�ationinto a more onrete implementation (see Figure 2.2). This step is alsoreferred to as re�nement or transformation. If all translation steps anbe proven to be orret, an atual implementation an be generatedwhih is orret by onstrution (i.e. it is orret with respet to thespei�ation).



10 CHAPTER 2. STATE OF THE ARTFormal Veri�ation. Formal veri�ation uses mathematial tehniques toensure that a system onforms to some preisely expressed notion offuntional orretness (spei�ation) [Bje05℄.Setion 2.2.1 will detail on model heking, while Setion 2.2.2 introduesformal spei�ation languages. Propositional satis�ability and tools for solv-ing satis�ability problems are presented in Setion 2.2.3.2.2.1 Model ChekingModel heking is an automati tehnique for verifying �nite state onurrentsystems [CGP99℄. It is a formal veri�ation method whih veri�es a ertainproperty of a system by exploring all reahable states of the system. Theadvantages of model heking over other veri�ation approahes are thatit an be applied fully automatially, and if a state has been found wherethe property is violated, model heking generates a ounterexample, i.e.,a sequene of transitions that leads the system into the faulty state. Thisounterexample an then be used to loate the atual fault of the system.There are two speial types of properties that are of interest in modelheking:
UML SDLSynhronousLanguages B-MethodCompilerFormalSynthesis

VDMASM ZFormal Spei�ation
ModelChekingTheoremProvingEquivaleneChekingSAT FormalVeri�ationFigure 2.1: Overview over formal methods [Bie08℄.



2.2. FORMAL METHODS 11Spei�ationImplementation SynthesisVeri�ation
Figure 2.2: Veri�ation and Synthesis.Safety. Safety properties assert that nothing bad happens. For example: "Aslong as the servie door is open, the mahine must not start".Liveness. Liveness properties assert that some progress eventually happens.For example: "The tra� light eventually turns green".Model heking tools use these properties enoded in some spei�ationlanguage (see Setion 2.2.2) to verify the system. Sine model heking toolstraverse all reahable states of a system, these states need to be representedin memory. The main problem of model heking is, that large systems oftenonsist of muh more states than an be represented in memory. This mainproblem is therefore alled the state explosion problem. Many approahesexist to overome this problem:Symboli Model Cheking [MM92℄. Symboli model heking avoidsbuilding a omplete state graph by using formulas to represent sets ofstates.Partial Order Redution [CGP99℄. Partial order redution redues thesize of the state graph by partially expanding loal states in a syn-hronous omposition of omponents.Compositional Model Cheking [BCC98℄. Compositional or modularmodel heking partitions a system into a set of omponents ommuni-ating over simple interfaes. Instead of heking the parallel omposi-tion of all omponents, eah omponent is heked separately, assumingertain behavior of the other omponents. The validity of these assump-tions is later veri�ed when the respetive omponent is heked.



12 CHAPTER 2. STATE OF THE ARTPrediate Abstration [Das03℄. Instead of heking a large system, anabstrat model of the system is reated. This abstrat model does notre�et all properties of the original system, while it still ontains enoughinformation to verify the desired orretness properties.While all of these tehniques aim at making model heking feasible, veryfew tools provide feedbak about the heking proess other than providing aounterexample trae or reusing the ounterexample to further detail the ab-stration (ounterexample guided abstration re�nement, CEGAR [CL00℄).ToolsModel heking tools (model hekers) exist for various appliation areas andvarious programming languages. The following list shows three prominentmodel hekers, all based on di�erent languages.SPIN. SPIN (Simple Promela Interpreter) [Hol03℄ is a model heker de-veloped by Gerard J. Holzmann and an be used to hek veri�ationmodels spei�ed in Promela, a veri�ation modeling language aimed atmodeling the behavior of onurrently exeuting proesses1.BLAST. BLAST [BHJM07℄, [HJMS03℄ is a model heking tool for C pro-grams and allows heking safety properties on an automatially gen-erated abstrat model of the program2.Java Path�nder. Java Path�nder [VH00℄, formerly based on the SPINmodel heker, is now an independent model heking tool based onits own Java Virtual Mahine. It an be used to searh for deadloks,unaught exeptions (for example, due to failed assertions), or evenustom properties that an be spei�ed in a Java lass3.2.2.2 Formal Spei�ationsThis setion introdues formal spei�ation languages whih are ommonlyused to express safety and liveness properties. These properties are then1http://www.spinroot.om2http://mt.ep�.h/software-tools/blast3http://javapath�nder.soureforge.net

http://www.spinroot.com
http://mtc.epfl.ch/software-tools/blast
http://javapathfinder.sourceforge.net


2.2. FORMAL METHODS 13CTL*CTL LTL
Figure 2.3: CTL* and its subsets CTL and LTL.veri�ed using a model heker.Temporal LogisTemporal logis represent propositions speifying properties of state transi-tion systems. These properties are desribed in terms of sequenes of transi-tions in the transition system using so-alled temporal operators expressingproperties like �nally or never.Computation Tree Logi* (CTL* ) is a superset of two widely used tem-poral logis: branhing-time logi (CTL) and linear-time logi (LTL). We�rst desribe the general properties of CTL* and then detail on the twosubset languages. The relation between CTL*, CTL, and LTL is outlined inFigure 2.3.CTL* [CGP99℄ formulas onsist of atomi proposition symbols and theusual logi operators ¬, ∧, ∨. These basi formulas are alled state formulasand an be used in ombination with the following temporal operators todesribe properties of (in�nite) paths in the omputation tree.� X. The subsequent formula holds at the following state (next).� F. The subsequent formula holds at some state on the path in theomputation tree (�nally).� G. The subsequent formula holds at all states on the path in the om-putation tree (globally).



14 CHAPTER 2. STATE OF THE ART� U binary operator: p1Up2 means that there must exist a state at whih
p2 holds and p1 must hold (until) on all states between the urrent stateand that state.� R binary operator: p1 R p2 means that p1 holds up to the state where
p2 holds (suh a state does not need to exist) (release).In addition, path quanti�ers an be used to speify the sope of the(sub)formula. These quanti�ers are A (all) and E (exists), meaning "for allomputation paths" and "for some omputation paths". Formulas are eval-uated on a transition system starting at a spei�ed state (usually the initialstate) [CGP99℄.Interfae AutomataInterfae automata [dAH01, dAH05℄ are a regular language to desribe theorder in whih methods of a omponent an be alled. Interfae automatatherefore desribe in whih order a omponent assumes that its methodsare alled and in whih order methods of external omponents are alled.Compatibility of two interfae automata an be omputed by �nding an en-vironment in whih no error state is reahable (optimisti approah). Theenvironment is de�ned as a sequene of external signals, e.g., a ommunia-tion hannel whih may fail to transmit a message, whose behavior an notbe guaranteed by some ontrat. A pessimisti approah would regard twointerfae automata inompatible as soon as a single environment was foundin whih an error state is reahable.ContratsContrats introdued by Bertrand Meyer [Mey86℄ desribe the mutual as-sumptions and guarantees between two omponents. Assumptions are ex-pressed as preonditions, guarantees as postonditions. In addition, a on-trat also desribes invariants that must hold at all times. Bertrand Meyer'sidea is to inorporate these elements in the design proess by stating theontrat before oding the implementation (design by ontrat).Design by ontrat is natively supported by some programming languages,like Ei�el [Mey92℄, D [Bri09℄, or Spe♯ [BLR+04℄. For other, more ommon



2.3. BELIEF REVISION AND BELIEF UPDATE 15languages, libraries and third-party tools exist, whih mimi the funtionalityof preonditions and postonditions.
2.2.3 Satis�abilitySatis�ability (SAT ) of Boolean properties is the deision problem of �ndingvariable assignments that make a Boolean property true. If suh an assign-ment an be found for all variables, the property is said to be satis�able,otherwise it is unsatis�able. If a formula is unsatis�able, it is alled a on-tradition, sine no assignment of truth values to its variables an make thewhole formula beome true.Current SAT solvers (tools for solving satis�ability problems) are mostlySMT solvers (satis�ability modulo theories) supplying speial theories likethe theory of integers, real numbers, arrays, or bit vetors. Some of the well-known solvers are Booletor [BBL08℄, MathSAT [BCF+08℄, Yies [DdM06℄,or Z3 [dMB08℄.Most SAT solvers are based on variations of the DPLL algorithm (Davis-Putnam-Logemann-Loveland) [DP60℄ assigning truth values to unassignedvariables, propagating impliations on other variables, and then either assigntruth values to other variables or baktrak in ase of on�its. Additionally,heuristis an be applied to hoose those variables as assignment andidateswhih lead to a satisfying assignment most quikly.
2.3 Belief Revision and Belief UpdateThe terms belief revision and belief update an be found in disiplines likephilosophy, arti�ial intelligene, or databases. In a nutshell, belief revisionand belief update are two strategies for adding on�iting information to aknowledge base. Depending on the reason for the belief hange, the one orthe other belief hange strategy is the better hoie. This setion will onlyonsider the AI view on belief hange.



16 CHAPTER 2. STATE OF THE ART2.3.1 De�nitionsThe following de�nitions give basi understanding about knowledge basesand belief hange operators.De�nition 2.1 A knowledge base (belief base) is a �nite set of formulasonsisting of a �nite set of atoms (ATM = p, q, r, ...) and the usual logi op-erators ¬, ∧, ∨, as well as the symbols ⊤ and ⊥ for true and false. Knowledgebases are equal to the onjuntion of their elements.De�nition 2.2 A knowledge base K is onsistent if it is satis�able.De�nition 2.3 A belief hange is an operation ∗ mapping a urrent know-ledge base K and new information N , a set of formulas, to a new knowledgebase K ∗N .A belief hange adds new information to an existing knowledge base whilekeeping the knowledge base onsistent. If new information added to the know-ledge base would make the resulting knowledge base inonsistent, some of theold information needs to be removed from the knowledge base. Belief revisionand belief update are two strategies di�ering in how ontraditing knowledgeis treated.2.3.2 Belief RevisionBelief revision (◦) is the type of modi�ation used when the hange of theknowledge base is due to new information about a stati world. The hangeof the knowledge base is therefore due to updated information on an un-hanged state of the world. Alhourrón, Gärdenfors, and Makinson [AGM85℄proposed 8 postulates (known as the AGM postulates) that every adequaterevision operator should satisfy. These 8 postulates have been reformulatedby Katsuno and Mendelzon to the following 6 revision postulates:(R1) (K ◦N)⇒ N . The result of the revision ontains the new information.New information has higher priority than old information.



2.3. BELIEF REVISION AND BELIEF UPDATE 17(R2) If K ∧N is onsistent, then K ◦N = K ∧N . If possible, the revisionuses onjuntion to add new information.(R3) If N is satis�able then K ◦N is satis�able. Therefore, revision alwaysestablishes a onsistent knowledge base, even if the original knowledgebase was inonsistent, unless N is inonsistent by itself.(R4) If (K1 ⇔ K2) ∧ (N1 ⇔ N2) then (K1 ◦N1)⇔ (K2 ◦N2). The revisionoperator should be invariant to the syntati form of the new infor-mation, thus logially equivalent information results in the same newknowledge base.(R5) (K ◦N1)∧N2 ⇒ K ◦ (N1 ∧N2). A revision by N1 ∧N2 is weaker thanjust adding N2 to the knowledge base updated by N1.(R6) If (K ◦N1) ∧N2 is satis�able then K ◦ (N1 ∧N2)⇒ (K ◦N1) ∧N2.(R5) and (R6) desribe the rule, that the revision operator should beapplied with minimal hange [KM89℄.2.3.3 Belief UpdateBelief update (⋄) is the type of modi�ation used when the hange of theknowledge base is due to new information based on hanges in an evolvingworld. The hange of the knowledge base is therefore due to updated informa-tion on a world that has hanged sine the knowledge base was established.Similar to the AGM postulates, Katsuno and Mendelzon de�ned 8 postulatesfor update operators (KM postulates) [KM91℄.(U1) (K ⋄N)⇒ N . The result of the update ontains the new information.New information has higher priority than old information (as R1).(U2) If K ⇒ N then (K ⋄ N) ⇔ K. Nothing needs to be hanged, if thenew information is already present in the knowledge base.(U3) If N is satis�able and K is satis�able then K ⋄ N is also satis�able.Therefore, update only has to establish a onsistent knowledge base, ifthe original knowledge base and the new information were onsistent.



18 CHAPTER 2. STATE OF THE ART(U4) If K1 ⇔ K2 ∧ N1 ⇔ N2 then K1 ⋄ N1 ⇔ K2 ⋄ N2. The update oper-ator should be invariant to the syntati form of the new information,thus logially equivalent information results in the same new knowledgebase.(U5) (K ⋄N1)∧N2 ⇒ K ⋄ (N1∧N2). An update by N1∧N2 is weaker thanjust adding N2 to the updated by N1.(U6) If K ⋄N1 ⇒ N2 and K ⋄N2 ⇒ N1 then K ⋄N1 ⇔ K ⋄N2. If N1 and
N2 are equivalent under K, then they result in the same update.(U7) If K is omplete then ((K ⋄ N1) ∧ (K ⋄ N2)) ⇒ K ⋄ (N1 ∨ N2). Aknowledge base is omplete, if it has a truth value for every symbol. Thispostulate is almost meaningless sine knowledge bases are in generalinomplete [HR99℄.(U8) (K1 ∨ K2) ⋄ N ⇔ (K1 ⋄ N) ∨ (K2 ⋄ N). Updating the two alterna-tive knowledge bases is equivalent to updating their disjuntion. Thispostulate desribes the idea of modelwise updating.Di�erent proposals for onrete update operations have been made. Mostof the proposed operators do not ful�ll all of the postulates [HR99℄. Onlyfew operators satisfy all 8 KM postulates. Therefore these postulates aredisussed ontroversially and Herzig and Ri� [HR99℄ have another set ofpostulates deduted from the 8 KM postulates inluding integrity on-straints [Win90, HR99℄ (formulas that must be guaranteed to hold afterevery update).2.3.4 Winslett's Standard SemantisWinslett's standard semantis [Win90℄ de�nes an update operator ful�llingonly some of the KM postulates for update operators: (U1), (U3), (U7), and(U8). Postulate (U2) is not satis�ed, beause the knowledge base may bealtered, even if K ⇒ N . We denote the update operator de�ned by Winslettas ⋄WSS . In a nutshell, the operator replaes existing information on a symbolwith new information about the symbol, and adds information about symbolsnot stated so far. Consider p ⋄WSS (p ∨ q) = p ∨ q. This operation obviouslydoes not satisfy (U2), sine p ⇒ (p ∨ q) but (p ∨ q) ⇒ p does not hold.



2.3. BELIEF REVISION AND BELIEF UPDATE 19Similarly, a ounterexample for (U4) an be found: onsider a knowledgebase p and updates q∧ (p∨¬p) and q. The update results in q∧ (p∨¬p) and
p ∧ q. Obviously, the results are not equal. This shortoming an be easilyoverome by eliminating redundant atoms.
2.3.5 ExampleThe following example is taken from [KM91℄.Consider a room with two objets in it, a book and a magazine. Suppose
b means the book is on the �oor, and m means the magazine is on the �oor.Then, K = {b ∨̇ m} states that the book or the magazine is on the �oor,but not both (∨̇ stands for xor). Now we order a robot to put the book onthe �oor. The result of this ation should be represented by the update of Kwith N = {b}.If we apply revision, the result ofK◦N isK∧N , that is (b∨̇m)∧b = b∧¬m.But why should we onlude that the magazine is not on the �oor? If weapply update, the result of K ⋄N is b, that is we do not know anything aboutm any more, whih is exatly what we would expet. The di�erene of thetwo operators is therefore, that revision assumes that the new information isadditional knowledge about an unhanged world, while update assumes thatthe new information is due to a hange of the real world.
2.3.6 The Frame ProblemThe frame problem deals with the unertainty involved in hanging parts ofa world without expliitly stating whih parts of the world do not hange.There are di�erent solutions to the problem from whih we will only desribethe one used in our implementation of the belief update.The default logi solution solves the frame problem by assuming that aproperty not stated in the hange ation did not hange. Thus, exatly thestated properties hange and all other properties (not on�iting with thehanged properties) remain unhanged.



20 CHAPTER 2. STATE OF THE ART2.3.7 Open vs. Closed World AssumptionSimilar to the assumption about unstated hanges to properties, we also needassumptions about how to handle properties that are not known to be trueor false. Assume that we have a knowledge base onsisting of the information
a∧ b. If we want to dedue b∧ c from this knowledge base, we need to deidewhether to return true, false or unknown.Closed World AssumptionThe losed world assumption presumes a omplete knowledge base that on-tains every piee of valid knowledge. Therefore, every statement that annotbe deduted from this knowledge base must be false.Open World AssumptionIn ontrast to the losed world assumption, the open world assumption as-sumes an inomplete knowledge base from whih a non-inferable statementmight either be due to the statement being false, or due to a missing state-ment. Thus, every statement that an not be deduted is said to be unknown(either false or missing).



Chapter 3Monao
”The most important decision

in language design concerns

what is to be left out.”- Niklaus WirthThe ontext of this thesis is the domain-spei� language Monao,a language for programming automation mahines. First, the design goalsof Monao are outlined (Setion 3.1). Setion 3.2 and 3.3 introdue thelanguage onstruts, while Setion 3.4 presents the runtime semantis ofMonao. Setion 3.5 onludes with an example appliation. More detailsof Monao are given in [PHS+08b℄.Monao (MOdeling Notation for Automation COntrol) is a domain-spei� language (DSL) for programming event-based, reative automationsolutions. The main purpose of the language is to bring automation pro-gramming loser to domain experts and end users. Important design goalstherefore have been to keep the language simple and to allow writing pro-grams whih are lose to the pereption of domain experts. The languageMonao is similar to StateCharts [Har87℄ in its expressive power, however,adopts an imperative notation. Moreover, Monao adopts a state-of-the-artomponent approah with interfaes and polymorphi implementations andenfores strit hierarhial omponent arhitetures to support the hierarhi-al abstration of ontrol tasks. After disussing design goals, the languageelements of Monao are presented. 21



22 CHAPTER 3. MONACO3.1 Design GoalsThe language Monao is designed with the goal that not only softwareengineers but also domain experts and, in a limited way, end users are a-pable of reading, writing, understanding, and adapting ontrol programs.Monao is speialized to a rather narrow sub-area of the automation do-main, i.e., programming ontrol sequene operations for manufaturing ma-hines. The lower level ontinuous ontrol layers and higher manufaturingexeution system (MES) layers are therefore out of sope. It is intended toover the event-based, reative ontrol part of mahine automation softwareonly. Therefore, a ontinuous ontrol system, typially realized in languagesof the IEC 61131-3 [IEC03℄ standard or plain C, will form a lower layer whihwill be ontrolled, sheduled, and oordinated by the higher reative layerimplemented in Monao.The language Monao has been designed based on a domain analysiswhih showed how domain experts and end users pereive automation solu-tions:� A domain expert pereives a mahine as being assembled from a set ofindependent omponents working together in a oordinated fashion.� Eah omponent normally undergoes a determined sequene of ontroloperations. There are usually very few sequenes whih are onsideredto be the normal mode of operation, and those are usually quite simple.Complexity is introdued by the fat that those normal ontrol ylesan be interrupted anytime by the ourrene of abnormal events, er-rors, and malfuntions.� The ontrol sequenes of the various mahine omponents are oordi-nated at a higher level.Additionally, we have identi�ed the following requirements for a DSL andtools in the target domain:� The language should be simple. It should ontain a minimal set of lan-guage onstruts and those should be intuitive and easy to understand.



3.1. DESIGN GOALS 23� Domain experts and also end users usually have some programmingexperiene in languages like Pasal or Basi. A syntax that is similarto one of those languages is therefore preferred.� Reliability is more important than �exibility and expressiveness. Pro-grams written by domain experts and end users are usually quite sim-ple. Furthermore, end users hange and adapt existing programs in arather restrited way. However, the e�et of programming mistakes anbe severe.� Reative behavior is intrinsially omplex. Espeially, realizing asyn-hronous event and exeption handling in a onise way represents ahallenge.� Programs must be runtime e�ient and must usually satisfy real-timeonstraints.The design of Monao is based on the following ideas:� Although the behavioral model of the language is very lose to State-Charts, an imperative style of programming is used. The languageadopts proven onepts from imperative languages suh as proeduralabstration, synhronous proedure alls, parameters, blok struture,lexial soping, and a Pasal-like syntax.� The main fous of the language is on event handling. Statements havebeen introdued to express reation to asynhronous events, parallelismand synhronization, exeption handling and timeouts in a onise way.However, asynhronous event handling is learly separated from normaloperation sequenes to avoid mingling the normal ode with exeptionhandling ode.� Monao pursues a omponent-based approah with strit modulariza-tion whih allows a diret mapping of the mahine struture to thesoftware struture.� In ontrast to many other omponent-based approahes in this domain,Monao pursues strit hierarhial ontrol arhitetures of subordi-nate and superordinate omponents. A omponent relies only on the



24 CHAPTER 3. MONACOoperations, state properties, and events from its subordinate ompo-nents. It omposes and oordinates the behavior of its subordinatesand provides abstrat and simpli�ed views to its superordinate ompo-nent. Thus, omplex omponents an be built by omposing existingomponents instead of diretly ontrolling signals of a mahine.� The assembly of Monao omponents toMonao programs is done ina separate on�guration phase (setup) prior to exeution. That meansthe entire system is statially on�gured, i.e., all omponents, ompo-nent parameters and the omponent hierarhy are �xed and an nothange while the program is running. This stati nature of Monaoprograms is an important property whih makes, for example, odeoptimization or stati program analysis feasible.In the following, the main language elements are presented.
3.2 Component Approah3.2.1 Interfae DelarationsInterfae delarations (Figure 3.1) are used for de�ning the stati ontrat be-tween omponents and their lients and hene have a similar purpose as inter-faes in modern objet-oriented languages. However, interfaes in Monaoaount for the hierarhial ommuniation arhiteture of ontrol programs.On the one hand, an interfae de�nes the externally visible operations of aomponent in the form of routine delarations. Those represent the opera-tions a superordinate will be able to all. On the other hand, an interfaede�nes how a omponent will provide feedbak about the ful�llment of itsontrol tasks. This is done by speifying events it will signal and funtions itprovides for aessing runtime state (properties) of the omponent. In otherwords, the routines de�ne tasks a omponent an perform and the events andfuntions de�ne feedbak the omponent will provide.



3.2. COMPONENT APPROACH 25
(a) Monao (b) UMLFigure 3.1: Interfae delaration in Monao (left) and UML (right).

(a) Monao (b) UMLFigure 3.2: Component delaration in Monao (left) and UML (right).3.2.2 Component ImplementationsInterfaes are implemented by omponents (Figure 3.2), i.e., omponents haveto implement the routines, funtions, and events de�ned in the interfaes. Aomponent has parameters and internal state variables. A parameter is aruntime onstant used to on�gure a omponent instane at setup time. Avariable, however, is used to hold runtime state properties of a omponent.



26 CHAPTER 3. MONACOComponents usually rely on subomponents to ful�ll their ontrol tasks.A omponent therefore delares subomponent variables whih an hold ref-erenes to subomponent instanes. Interfae types are used in the subom-ponent variable delarations. The subomponent delaration represents therequired interfaes of the omponent (Figure 3.2). Subomponents are poly-morphi, i.e. any omponent implementing (providing) the required interfaean be used. The atual subomponent instane is plugged into the subom-ponent slot at setup time (see below).There are no aess modi�ers in Monao. Only elements de�ned in theimplemented interfaes of the omponent are externally visible.Components implement funtions, events and routines. A funtion imple-mentation in a omponent is similar to funtions in proedural programminglanguages, e.g., Pasal. They return runtime state properties of omponents.In Monao, funtions have no side e�ets, i.e., they are not allowed to setglobal variables, all routines, raise events, or to reurse. Usually funtionsare used to ompute important state properties and forward those in a moreabstrat, onentrated form to the superior omponent.Routines are used to implement ontrol algorithms and therefore on-stitute the entral programming elements of omponents. Routines will bedisussed in detail in Setion 3.3.
3.2.3 Stati Con�gurationIn order to reate a ompleteMonao program,Monao omponents haveto be instantiated and the omponent/subomponent relation needs to be es-tablished (Figure 3.3). Furthermore, omponent parameters have to be setif the desired values di�er from the de�ned default values. This stati on-�guration of the system is established in a setup phase prior to programexeution. The on�guration annot be hanged during the exeution of theMonao program.
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(a) Monao (b) UMLFigure 3.3: Subomponent relation in Monao (left) and UML (right).
3.3 Reative System Programming3.3.1 Control RoutinesRoutines are used to implement ontrol algorithms of omponents. Routinesare de�ned similar to proedures in imperative languages. They an have pa-rameters, loal variables and a body with a statement sequene. Well-knownlanguage onstruts from strutured programming languages like blok stru-ture, lexial soping, loops, if statements et. are used. Additionally, speialprogramming onstruts for parallel tasks and event handling with seman-tis similar to StateCharts are provided. Neither diret reursion, nor mutualreursion of routines is allowed.Routines an be delared ATOMIC whih means that their exeution an-not be interrupted by event handlers and that they are exeuted atomiallywhen used in a parallel branh. In fat, these routines may not make useof any reative statements (suh as onditional waits, parallel exeution, orevent handlers), but may, for example, only set a variable or all anotheratomi routine. Non-atomi routines may use the reative statements as pre-sented in Setions 3.3.3-3.3.6.
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(a) Monao (b) StateChartsFigure 3.4: WAIT statement in Monao (a) and StateCharts (b).3.3.2 Imperative StatementsMonao omes with imperative statements like IF and WHILE used withinroutines to a�et the ontrol �ow. Their semantis is in aordane withommon programming languages.The IF statement is used to onditionally exeute a ode blok. Theondition an be any Boolean expression. If the ondition is not true, the

ELSE branh of the IF statement is exeuted.Similarly the WHILE statement an be used to delare a onditional repe-tition of a ode blok. The head of the WHILE statement ontains a ondition.As long as this ondition is true, the blok of the statement is exeuted.
3.3.3 Conditional WAITThe WAIT statement suspends the exeution of the urrent exeution threaduntil a spei�ed ondition is satis�ed. Any Boolean expression as well asevents an be used as a ondition. Thus, x>0, evtClosed.FIRED, and
TIMEOUT(1000) are all valid onditions. The latter expression returns true,as soon as the spei�ed time in milliseonds has passed sine the statementwas reahed.Compared to StateCharts, a WAIT orresponds to a state node with theondition as the triggering event (Figure 3.4).
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(a) Monao (b) StateChartsFigure 3.5: ON handler in Monao (a) and StateCharts (b).3.3.4 Asynhronous Event Handling
ON handlers are used to handle events whih an our asynhronously to nor-mal, sequential program exeution. They are similar to exeptions in general-purpose programming languages. ON handlers speify a ondition (see validonditions in a WAIT statement above) and are attahed to BEGIN/ENDbloks (Figure 3.5). Their meaning is that, whenever the ondition of the
ON handler beomes true while program exeution is within the BEGIN/ENDblok or within a routine alled in this blok, the blok is left and the state-ment sequene of the ON handler is exeuted. For ON handlers to be mean-ingful, the guarded BEGIN/END blok has to have bloking statements, i.e.,
WAIT statements, where program exeution gets suspended and the asyn-hronous event handling an our.If ON handlers are nested, the dynamially innermost ON handler haspreedene over outer ON handlers. ON handlers have interruptive behavior,therefore program exeution ontinues immediately after the handler.

ON handlers show similarities to try/ath onstruts in Java, however,they are muh more general. While in Java an exeption must be thrown
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(a) Monao (b) StateChartsFigure 3.6: RESUME statement in Monao (a) and StateCharts (b).expliitly and then an be aught in ath lauses, ON handlers are triggeredby arbitrary Boolean onditions beoming true.
ON handlers in Monao are analogous to OR states and their transi-tions in StateCharts. Figure 3.5 shows the relationship. The OR state groupsthe states, e.g., the bloking WAIT statements, and transitions within the

BEGIN/END blok. The transition leaving the OR state is labeled with theondition of the ON handler. An ON handler an onsist of an arbitrary se-quene of statements.The interruptive behavior of an ON handler is the default. However, the
RESUME statement an be used to resume exeution of the blok after thehandler ode has been exeuted. The exeution of the blok is resumed ex-atly where it was interrupted, even if it was interrupted within a routineall. The RESUME statement therefore has the same semantis as the deephistory node in StateCharts (Figure 3.6). Currently, there is no statementequivalent to the normal history node in Monao.3.3.5 Parallel Exeution ThreadsThe PARALLEL statement is used for reating multiple onurrent exeutionthreads. Eah parallel exeution thread onsists of a statement or a statementblok. As soon as all parallel exeution threads have terminated, program ex-
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(a) Monao (b) StateChartsFigure 3.7: PARALLEL statement in Monao (a) and StateCharts (b).eution ontinues after the PARALLEL statement. The PARALLEL statementhas the semantis of the AND state in StateCharts, see Figure 3.7.3.3.6 Event SignalsAlthough Monao allows using arbitrary Boolean onditions as event trig-gers, event signals are provided. Those are similar to the event triggers inStateCharts or the signal onept in Esterel [BC85℄.An event is delared as event variable in interfaes and omponents withthe EVENTS keyword (see interfaes and omponents above). In routine bod-ies events an be �red using the FIRE statement. The event variable an thenbe used like any other Boolean variable in WAIT and ON handlers (Figure 3.8).In ontrast to normal Boolean variables, a �red event is true for one logialtime step and reset automatially in the next time step. See next setion forexeution details.3.4 Exeution SemantisMonao's exeution semantis is based on the following onepts: syn-hronous routine alls, ooperative multitasking, fair thread sheduling, and
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(a) Monao (b) StateCharts
() Monao (d) StateCharts

(e) Monao (f) StateChartsFigure 3.8: Usage of event signals with equivalent StateChart models.event broadast. In the following we will disuss those issues in more detail.3.4.1 Synhronous Routine CallsRoutines are alled synhronously, i.e., the aller waits until the routine ter-minates. This is an important di�erene to many omponent approahes inthe real-time domain, e.g., UML/RT, where interation between omponentshappens by event signals only. We have experiened, that synhronous allsemantis together with the hierarhial ommuniation arhiteture lead toontrol programs whih are easier to omprehend by domain experts and endusers (see example in Setion 3.5).3.4.2 Cooperative Multitasking With FairnessMonao employs a ooperative multitasking sheme with fairness. There arewell-de�ned sheduling points in a program where threads an get suspendedand other threads get the hane to proeed. Sheduling points are WAIT
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Figure 3.9: Thread state diagram (simpli�ed).statements, points before and after a PARALLEL statement, and at routinereturns. Between those points program exeution is treated as atomi andannot be interrupted. Therefore, program exeution is analogous to the run-to-ompletion semantis of StateCharts [Har87℄.Threads are reated in Monao by the PARALLEL statement and ONhandlers. A PARALLEL statement reates a thread for eah branh whih isready for exeution. The main branh is then suspended until all branhes areterminated. Similarly, an ON handler reates a thread whih is waiting for itsondition. ON handler threads are terminated when exeution of the guardedblok has �nished, regardless of whether the handler thread was exeuted.A �xed preedene order is used to arbitrate between ompeting parallelthreads. Currently, the order is determined based on order in whih the par-allel branhes appear in the soure ode. Furthermore, ON handlers alwayshave preedene over their main thread and, in ase of nested ative han-dlers, the innermost handler in terms of the dynami nesting is preferred.This approah is simple and deterministi and we have experiened that itserves our objetives. For more details on the exeution semantis refer toSetion 5.2 and [PHS+08b℄.Figure 3.9 shows state transitions of threads. Initially, eah thread is inthe ready state. This means it is not waiting for any ondition and is thereforeready to run. When the sheduler starts a thread, it transits to the runningstate. It remains running until it reahes a sheduling point; it hanges intothe waiting state again. The thread beomes ready again, as soon as itsondition (from WAIT statement or ON handler) beomes true.When a thread reahes a parallel statement, it is passivated. This meansit an not run until it is ativated again. The thread is ativated again whenall branh threads are terminated.



34 CHAPTER 3. MONACOThe ooperative sheduler uses a fair thread sheduling algorithm basedon logial time steps. One started by a ful�lled WAIT ondition, a threadonly runs to the next sheduling point. At this point another thread in theready state gets the hane to run. When all threads in the ready state haverun to their next sheduling point, the logial time step is over. Therefore,when a thread is running one in a logial time step, it an not get startedagain in the same logial time step. This mehanism prevents starvation ofparallel threads. It ensures that eah parallel thread that is ready has ahane to run before another thread is started a seond time.3.4.3 Event BroadastEvents are broadast within their dynami sope. The dynami sope ofthe event is the omponent in whih the event is delared, as well as inomponents using this omponent (only if the event is also delared in theomponent's interfae).Events are ative for one logial time step only. That means when several
WAIT statements and ON handlers are onurrently waiting for an event,they get started based on the sheduling sheme as outlined above. Moreover,events are always propagated from the innermost blok outward. When aninner ON handler handles the event, further surrounding ON handlers will notreeive it. Note, that this behavior only applies to events sine events aredeativated one they are handled. If, however, two nested ON handlers bothwait for a Boolean ondition, the outer handler may be ativated after theinner handler was ativated, if the ondition is still true.3.5 Example Control ProgramThis setion demonstrates programming in Monao with a sample appli-ation. It shows how language onstruts presented in this hapter are em-ployed in realizing a omponent-based, hierarhial ontrol program. First,we brie�y desribe the physial proess of injetion molding. Next, we showthe deomposition of the mahine into a hierarhy of omponents, and thenshow the hierarhial abstration of ontrol funtionality by omponents atdi�erent hierarhy levels.



3.5. EXAMPLE CONTROL PROGRAM 353.5.1 Example SystemFor validation of onepts, we have developed several example appliationsin Monao. One has been a reimplementation of an existing ontrol pro-gram for an injetion molding mahine, whih was originally implementedin the IEC 61131-3 [IEC03℄ standard languages. We have implemented theevent-based part of the appliation in Monao and have oupled it with asimulator for testing purposes. The Monao program has led to a drastiredution in ode size to less than one �fth of the original ode, and, at thesame time, to a signi�ant improvement in ode larity. Speial emphasishas been put on handling errors and malfuntions of the mahine. It hasbeen shown that the Monao language is apable of desribing mahinefailure handling in a ompat and onise way. In the following we show odefragments of a simpli�ed version of the example software system.Our example deals with injetion molding mahines. These mahines areused to produe plasti parts by injeting heated, semi-�uid plasti into amold where the plasti ools down and hardens within a short period. In orderto produe plasti parts with various nothes and holes, it is neessary to havean adaptable mold that inserts so-alled ores into the molding hamberduring the injetion proess. After the plasti part is hardened, the ores areremoved, the part gets ejeted, and the proess starts over again. During theooling phase, new raw material (plasti pellets) is heated up for the nextinjetion phase.Figure 3.10 shows the struture of the sample molding mahine. There aretwo main omponents in the mahine: the mold subsystem with the lamp,the ejetor and a ore puller; and the nozzle subsystem that is mountedon a sledge with the material funnel, the heating system and the srew forinjetion. Finally, the ejetor serves the purpose of ejeting the �nished partsout of the mold.3.5.2 Component HierarhyThe omponent hierarhy of the ontrol program resembles the struture ofthe real mahine (Figure 3.11). There is a diret mapping from the problemstruture to the solution struture. On top, the Machine omponent is re-sponsible for enoding the overall ontrol yles. It knows di�erent operation
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Figure 3.10: Struture of the molding mahine.

Figure 3.11: Component hierarhy of the molding mahine.modes, e.g., full automati or half automati and relies on and oordinatesseveral subomponents orresponding to the di�erent mahine subsystems.The omponents for nozzle and mold are further deomposed aording tothe di�erent parts of the subsystems. At the bottom of the hierarhy there areomponents for interfaing with lower level ontrol layers or the hardware.Those are usually implemented in the native language of the lower layers; inthis example program Java omponents build the interfae to the simulator.Components at di�erent hierarhy levels typially serve di�erent purposes



3.5. EXAMPLE CONTROL PROGRAM 37as follows:� Components at the bottom are used for interfaing with the hardwareor lower ontrol layers. They usually set and read basi system vari-ables. This layer is often referred to as hardware integration layer.� Components at the �rst level ompose primitive operations of the bot-tom layer into elementary ontrol routines and supervise their exeu-tion.� Higher up in the hierarhy there are several oordination omponentswhih oordinate and supervise the operations of several subompo-nents.3.5.3 Control ComponentsInterfae to hardware and ontinuous ontrol layersIn the example program, the omponents forming the leaves of the ompo-nent hierarhy are native Java lasses building the interfae to a simulatorwhih simulates the real mahine and the ontinuous ontrol layer. Nativeomponents implement a Monao interfae whih represents the interfaefor the omponents higher in the omponent hierarhy (there is diret map-ping of routines, funtions and events to equally named Java methods). Thefollowing ode snippet (Figure 3.12) shows the interfae de�nition of theore puller omponent ICore. The interfae de�nes elementary routines toset system variables to start and stop insertion and removal of the ore anda funtion giving the urrent position of the ore puller.First level ontrol omponentsThe omponents residing in the hierarhy level diretly above the native om-ponents use those interfaes to ompose elementary operations into basi taskroutines. For example, the CoreCtrl omponent has the native omponent
core as its single subomponent. It de�nes two routines to insert and re-move the ore. Additionally, a stop routine is provided whih immediatelystops all movements.



38 CHAPTER 3. MONACO
INTERFACE ICore
FUNCTION position() : REAL;

ROUTINE startInsert();
ROUTINE stopInsert();
ROUTINE startRemove();
ROUTINE stopRemove();

END Figure 3.12: Interfae ICore.
COMPONENT CoreCtrl IMPLEMENTS ICoreCtrl
PARAMETERS

coreMovementStartedTimeout : INT := 200;
coreInsertTimeout : INT := 1400;
coreInsertedPos : REAL := 0.6;
coreRemovedPos : REAL := 0.8;

SUBCOMPONENTS
core : ICore;

EVENTS error;

FUNCTION isInserted() : BOOL
BEGIN

RETURN core.position() >= coreInsertPos;
END inserted
...

END CoreCtrl Figure 3.13: Component CoreCtrl.The following ode snippet (Figure 3.13) shows part of the CoreCtrlomponent. Besides showing delaration of parameters, subomponents andevents, it also demonstrates how funtions are employed for abstrating stateproperties from lower level information of subomponents.Routines implement the basi ontrol tasks. However, besides de�ningthe basi sequene of ations, routines also hek for the orret exeution ofontrol tasks and orret reations from the subordinate. This an be doneusing ON handlers.The ode snippet (Figure 3.14) demonstrates this approah with the
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ROUTINE insert()
BEGIN
core.startInsert();
BEGIN

WAIT NOT core.isRemoved();
ON TIMEOUT(coreMovementStartedTimeout)

stop();
FIRE error;
RETURN;

END
BEGIN

WAIT core.isInserted();
core.stopInsert();

ON core.isRemoved()
stop();
FIRE error;
RETURN;

ON TIMEOUT(coreInsertTimeout)
stop();
FIRE error;
RETURN;

END
END insert Figure 3.14: Routine insert.
insert routine. First, startInsert is alled for the subomponent corewhih will set a hardware signal and start the insertion proess. Next, a re-ation from the isRemoved signal is expeted. If this sensor does not goto false within a given (short) time period, a fault in the insertion proessor a faulty sensor has to be assumed; so the proess is stopped and an errorevent is �red. Next, the insert routine waits for the isInserted signalto beome true and then stops the insertion proess. Again the proess is su-pervised by two ON handlers. The �rst handler heks that the isRemovedsignal does not swith to true again (whih might result from a faulty sensor).The seond handler heks that the reation of the isInserted signal o-urs in time. In both error ases the proess is stopped and the error eventis �red. Note, that this way, the insert routine is guaranteed to either runorretly to its end or an error signal will our.



40 CHAPTER 3. MONACOThe ontrol behavior de�ned so far is provided in a more abstrat way inan interfae delaration to the upper omponent. The following ode snippet(Figure 3.15) shows the interfae ICoreCtrl of the CoreCtrl omponent.There are routines for inserting, removing, and stopping the ore, as well astwo Boolean funtions telling if the ore is inserted or removed. Additionally,the error event appears in the interfae whih means that the upper om-ponent will be able to hek for the errors ourring during exeution of theontrol routines.
INTERFACE ICoreCtrl
EVENTS error;
FUNCTION isInserted() : BOOL;
FUNCTION isRemoved() : BOOL;
ROUTINE insert();
ROUTINE remove();
ROUTINE stop();

END ICoreCtrl Figure 3.15: Interfae ICoreCtrl.Coordination levelsAs next higher level omponent the MoldCtrl omponent is disussed. Thisomponent has to oordinate the operations of the core and the clampsubomponents (see Figure 3.16).The ode snippet in Figure 3.17 exempli�es this by the close routine.Its purpose is to ontrol the proess of losing the lamp and inserting the
COMPONENT MoldCtrl IMPLEMENTS IMoldCtrl
PARAMETERS

coreInsertPos: REAL := 150;
SUBCOMPONENTS

clamp : IClampCtrl;
core : ICoreCtrl;

...
END MoldCtrl Figure 3.16: Component MoldCtrl.
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ROUTINE close()
BEGIN
PARALLEL

clamp.close();
||

WAIT clamp.position() >= coreInsertPos;
core.insert();

END
ON core.error OR clamp.error
stop();
FIRE error;
RETURN;

END close Figure 3.17: Routine close.
INTERFACE IMoldCtrl
EVENTS error;
FUNCTION isOpen() : BOOL;
FUNCTION isClosed() : BOOL;
FUNCTION clampPos() : REAL;
ROUTINE open();
ROUTINE close();
ROUTINE stop();

END IMoldCtrl Figure 3.18: Interfae IMoldCtrl.ore, whih should our in parallel. However, insertion of the ore has tostart after the lamp has reahed the coreInsertPos. In this routine wedo not need to worry about timeouts and possible error onditions of the oreor any other subomponent. Those routines are already heked for orretexeution and �re error events. Thus, it is su�ient to have an ON handlerfor errors reported by the core and clamp subomponents (whih in thisexample again �res an event to inform its upper omponent). In this way,one gets a more abstrat view of a subsystem. The ode in Figure 3.18 showsthe interfae of the MoldCtrl omponent.Finally, the following routine automatic represents the overall auto-mati ontrol yle of the mahine (Figure 3.19). This is usually the level



42 CHAPTER 3. MONACOwhih is also presented to end users. The operation yle of the mahine getslearly represented in the ode. In the inner ontrol loop �rst the mold islosed. Then injetion is done and in parallel the ooling time is heked.Then, in parallel ativities, the mold is opened, new material is inserted intothe srew (nozzle.plasticize) and, after the mold has been opened toa determined point, the piee is ejeted.



3.5. EXAMPLE CONTROL PROGRAM 43
ROUTINE automatic()
BEGIN
BEGIN

nozzle.startHeating();
WAIT nozzle.temperatureReached(nomTemp);
LOOP
BEGIN
mold.close();
PARALLEL
nozzle.inject();

||
WAIT TIMEOUT(coolingTime);

END

PARALLEL
nozzle.plasticize();

||
mold.open();

||
WAIT mold.clampPos() < 0.5;
ejectorCtrl.eject();

END
END

ON mold.error OR nozzle.error OR systemStopped()
PARALLEL
mold.stop();

||
nozzle.stop();

||
ejectorCtrl.stop();

END
END
nozzle.stopHeating();

END automatic Figure 3.19: Routine automatic.
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Chapter 4Contrats and Constraints
This hapter introdues ontrats as a mean for speifying omponent behav-ior as well as onstraints that desribe dependenies between omponents.First, Setion 4.1 disusses ontrats and their relation to Monao ompo-nents. Setion 4.2 introdues an LTS-based automata formalism used to spe-ify omponent behavior. The presented automaton formalism is augmentedwith pre- and postonditions, as well as invariants in Setion 4.3. Constraints(safety properties) are presented in Setion 4.4. Finally, Setion 4.5 brie�ydesribes notations for ontrats and onstraints.4.1 IntrodutionIn general, ontrats are formal agreements between two or more parties.Bertrand Meyer introdued the paradigm of Design By Contrat [Mey86℄whih de�nes ontrats as spei�ations that desribe as losely as possiblethe mutual obligations and bene�ts involved in the ommuniation betweensoftware elements.This de�nition omprises more than usual interfaes in objet-orientedprogramming languages orMonao. Interfae de�nitions usually de�ne rou-tines and funtions with their parameter types and return values. While thisdesription states what an be done with an objet of this type (struture,stati behavior), it does not state anything about the e�ets, valid sequenes(dynami behavior), and valid state of routine alls. That is, it only spei�es45



46 CHAPTER 4. CONTRACTS AND CONSTRAINTSthe syntax and says nothing about the behavior of omponents.In ontrast, protool ontrats as introdued in this thesis, de�ne the dy-nami behavior in the ommuniation between software elements. They aresimilar to behavior protools [PV02℄, sequening onstraints in Ceil [OO90℄,and interfae automata [dAH01℄ (see Setion 9.1). Protool ontrats there-fore allow one to express the following aspets of the dynami behavior ofomponents:Valid all sequenes. Operations of omponents often require a ertainsequene in order to be suessful. For example, a omponent's behavioroften onsists of an initialization phase, several operative ations, andeventually a termination phase. If this sequene is not obeyed, runtimeerrors our, or in the domain of industrial automation, a mahine anbe damaged. It is therefore desirable to expliitly state these restritionson the omponent usage and to be able to hek and enfore thesesequenes.E�ets of a all. Routine alls normally result in hanges of the omponentstate. These hanges (the e�ets of the routine) are alled guaranteesor postonditions and an be expressed by Boolean onditions that areguaranteed to hold after the all to the routine.Requirements of a all. In order to be exeutable, routines may requirethe omponent to be in a ertain state. Suh a requirement is alled apreondition. A preondition is expressed as a Boolean ondition thatneeds to hold before a all to the routine an be exeuted.Initial state of a omponent. In order to dedue the situation of a om-ponent at a ertain position in the exeution, it is neessary to de�nethe initial situation, i.e. the state of the omponent before any routineof the omponent has been alled.Invariants. Invariants in protool ontrats desribe immutable proposi-tions that help reasoning about omponent states by adding informa-tion about the dependenies of omponent properties. The dependen-ies an be aused by physial exlusion of states.InMonao we use protool ontrats as outlined above to onstrain allsequenes and to speify the dynami behavior of omponents. In doing so, we



4.2. AUTOMATA FORMALISM 47Monao Interfae + Protool ContratRoutine Routine

Subomponent SubomponentMonao Interfae +Protool Contrat Monao Interfae +Protool Contrat
Monao Component

Figure 4.1: Protool ontrats in the Monao omponent hierarhy.exploit the hierarhial struture of Monao omponents. Sine eah om-ponent implements an interfae, and subomponents are spei�ed by theirinterfae type, the Monao omponent hierarhy enapsulates omponentsas illustrated in Figure 4.1. The �gure shows a omponent with two routines,and two subomponents eah spei�ed by their interfae. The interfaes of thesubomponents eah have a ontrat desribing how the subomponents anbe used. The omponent itself also implements an interfae and a ontrat.The ontrat of the omponent de�nes how its routines an be alled.In the following, we introdue protool ontrats for Monao ompo-nents whih are based on labeled transition systems (LTS) [BJK+05℄.
4.2 Automata FormalismThis setion reviews the well-known automata formalism labeled transitionsystems (LTS) [BJK+05℄ and introdues aMonao-spei� extension of LTSwhih is used to apture the omponent behavior by enoding it as valid eventsequenes.



48 CHAPTER 4. CONTRACTS AND CONSTRAINTSDe�nition 4.1 A labeled transition system is a quadruple L = 〈S, I, A, T 〉that onsists of the following elements:� S is the set of states.� I ⊆ S is the set of initial states.� A is the set of ations (labels).� T ⊆ S ×A× S is the transition relation.In ontrast to �nite automata, LTS do not have �nal states, sine theyhelp reasoning about sequenes of events, not about language aeptane.Figure 4.2 shows an example of a labeled transition system onsisting ofthree states S = {1, 2, 3}, the initial states I = {1}, the ations A = {a, b, c},and the transition relation T = {(1, a, 2), (2, b, 3), (3, c, 1)}.123
a

b

c

Figure 4.2: Labeled transition system.To serve our speial requirements of speifyingMonao omponent on-trats, we extend LTS as follows. Routine alls inMonao have synhronoussemantis and an be aborted during exeution. This semantis has to be re-�eted in the speialized LTS by separating routine alls and routine returns.The set of ations will be onstrained to ontain only routine alls, routinereturns, events and an unobservable internal event. First, we formally intro-due a Monao omponent interfae.De�nition 4.2 Let I = 〈R, F, E〉 be the desription of a omponent inter-fae where the elements R, F , E have the following meaning:� R is the set of routine symbols.



4.2. AUTOMATA FORMALISM 49� F is the set of funtion symbols.� E is the set of event symbols de�ned in the interfae.Remark: We disregard parameters in the desription of fun-tions and routines. Parameters play a minor role in Monaoprograms, while disregarding parameters eases the desription ofontrats.De�nition 4.3 We all our extension of LTS protool automata. A protoolautomaton is a quadruple PA = 〈S, sinit, A, T 〉 desribing an LTS with onlya single initial state and a onstrained set of ations.� S is the set of states.� sinit ∈ S is the initial state. In ontrast to LTS, we only need exatlyone initial state as a omponent typially has exatly one initial state.� A = R×{call, ret}∪{τ} is the set of ations (alphabet). R is the set ofroutine symbols de�ned in the interfae of a Monao omponent (seeabove). τ is the empty ation representing an unonditional, immediatetransition.� T ⊆ S ×A× S is the transition relation.The set of ations A an be further subdivided into the sets Acall = R ×

{call} and Aret = R×{ret}. These sets are alled the sets of all ations andreturn ations. Similarly, the set Tcall = S×Acall×S and Tret = S×Aret×Sare alled the set of all and return transitions, respetively.The separation of routine alls and routine returns is illustrated by twoexamples in Figure 4.3. Example (a) shows a protool automaton onsistingof three states and two transitions. State 1 is the single initial state. The twotransitions represent exeution of routine r1. The all is separated into theall and the return from the all. The �rst transition is a all transition, whilethe seond is a return transition. Figure 4.3 (b) shows a protool automatonsimilar to the one in (a). The di�erene is in the all to routine r1, whih aneither return (r1, ret) or be aborted. The additional transition from state 2to state 3 is a τ transition desribing an unobservable internal event. Theuse of τ transitions will be explained in Setion 4.3.
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123

(r1, call)

(r1, ret)

(r1, call)

(r1, ret) τ(a) (b)Figure 4.3: Protool automata showing the separation of routine all androutine return and di�erent types of transitions.4.3 Interfae ContratWe use ontrats to desribe valid all sequenes of routines for a Monaointerfae. They are based on the notion of protool automata presented above(Setion 4.2), but have additional information like preonditions and post-onditions stating required states and guarantees about the behavior of aomponent.4.3.1 Pre-, Post-, and Initial-ConditionsContrats ontain pre- and postonditions to express requirements and guar-antees of omponent properties in ertain states. Guarantees an be expliitlyaneled using retration, and guarantees about the initial values of ompo-nent properties an be made. These onditions are re�eted in a ontrat bythe funtions Pre, Post, Retract, and Initial.Pre- and postonditions are logial propositions over all funtion sym-bols plus numerial and Boolean onstants. That means we use the funtionsymbols from F as logial variables. Funtions with numerial return typean be used with relational operators and numerial onstants. We allow theombination of logial expressions with the logial operators ∧, ∨, and ¬.We denote the set of all satis�able logial propositions over symbols f ∈ Ffor an interfae I as C.De�nition 4.4 Let S be the states of a protool automaton. Then we de�ne



4.3. INTERFACE CONTRACT 51four funtions:� Pre : S → C is the funtion mapping states to the set of preonditions.The semantis of a preondition of a state is that this ondition mustbe ful�lled before the state an be reahed (i.e. the transition leading tothe state an be exeuted).� Post : S → C is the funtion mapping states to the set of postonditionswith the meaning that the given ondition is guaranteed to be true afterthe state is left (i.e. the transition leaving the state is exeuted).� Retract : S → P(F ) maps states to funtion symbols. The semantis ofretration of a funtion symbol is, that any guarantee about this symbolis retrated.� Initial ∈ C desribes the initial onditions holding before any routinehas been alled. This desription is alled initial ondition and an beregarded as a guarantee, that the omponent initially is in a ertainstate.By default, a guarantee holds, until it is invalidated by a more reentguarantee. For details about knowledge update and retration, refer to Se-tion 6.3.4.3.2 InvariantsComponents have state properties with logial dependenies on eah other.A dependeny is often due to physial laws prohibiting onurrent preseneof two states. These dependenies an be formulated as Boolean formulas,alled invariants. In the literature, suh invariants are also referred to asintegrity onstraints [HR99,Win90℄. If these invariants are stated expliitly,they help in the knowledge dedution proess by adding additional knowledgeand keeping the knowledge base onsistent.For example, let's assume we have a hydrauli ylinder omponent thatan be opened and losed. Its observable properties are the Boolean funtions
isOpen and isClosed. Both properties an never be true simultaneously.Yet, it is possible that the omponent is neither opened nor losed (it is in
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[Invariant: NOT (isOpen() AND isClosed())]Listing 4.1: Invariant desribing the logial dependeny between isOpenand isClosedsome intermediate position). An invariant desribing the dependeny of theseproperties together with the knowledge of one of the properties allows us todedue that the other property does not hold. Listing 4.1 shows an exam-ple invariant desribing the logial dependeny between the two propertiesmentioned above.De�nition 4.5 We assoiate a set of invariant onditions Inv with an in-terfae ontrat. Inv ∈ C, that means invariant onditions are logial propo-sitions over the funtion symbols F (see above).4.3.3 SummaryIn summary, an interfae ontrat onsists of the following elements:� PA = 〈S, sinit, A, T 〉 is the protool automaton de�ning valid allsequenes.� Pre : S → C is the funtion mapping states to the set of preonditions.� Post : S → C is the funtion mapping states to the set of postondi-tions.� Retract : S → P(F ) is the funtion mapping states to propositionalsymbols for retration of knowledge.� Inv ∈ C is the set of invariant onditions (integrity onstraints).4.3.4 ExamplesIn the following, two example ontrats will be presented, showing pre-, post-and initial onditions, as well as invariants. An example for knowledge re-tration is presented in Setion 6.3.2. The �rst example shows a ontrat fora hydrauli ylinder. The ylinder an be opened and losed. The interfae of
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INTERFACE ICylinder
ATOMIC ROUTINE startOpen();
ATOMIC ROUTINE startClose();
ATOMIC ROUTINE stop();

FUNCTION isOpen() : BOOL;
FUNCTION isClosed() : BOOL;

END ICylinderListing 4.2: Interfae of a ylinder omponentthe ylinder omponent is shown in Listing 4.2. The routines startOpen,
startClose, and stop atomially start or stop a movement of the ylinder.The Boolean funtions isOpen and isClosed return whether the ylinderis fully opened or fully losed.To make the graphial representation more readable, transitions in thegraphial representation of protool automata will be labeled with r! for rou-tine alls (instead of (r, call)) and r? for routine returns (instead of (r, ret)).The ontrat for the ICylinder interfae is as follows: the ylinderan be opened with the routine all startOpen and losed with a all ofthe routine startClose. The e�et of a routine all is that the openingrespetively losing movements are started and the routine all immediatelyreturns. The movement an be stopped using the routine stop.The two funtions of the interfae report whether the ylinder is urrentlyopened, losed, or neither opened nor losed (both funtions return false).Figure 4.4 shows the protool automaton for this ontrat. Note that theontrat does not state that the startClose routine auses the isClosedfuntion to evaluate to true. The only onlusion that an be made is thatstarting the lose movement makes isOpen evaluate to false. Note, that thepostonditions are assoiated with the states representing the exeution ofthe routine. The postonditions hold, as soon as this state is left.Additionally an invariant states that the ylinder an never be openand losed simultaneously. The invariant is given by Inv = {¬(isOpen ∧

isClosed)}.The seond example desribes a ontrat for a driller mahine like the oneshown in Figure 4.5. The mahine onsists of two subomponents, a drillerand a ooler. The interfae IDriller of the driller omponent delares
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startClose! startClose?

Post : ¬isOpen()

startOpen! startOpen?Post : ¬isClosed()

stop!stop?Figure 4.4: Protool automaton for the ICylinder interfae.

Figure 4.5: Driller and ooler omponent
routines and funtions as outlined in Listing 4.3. The intended behavior of theinterfae is, that any omponent implementing this interfae should �rst bestarted, then be moved down and up in turn and eventually be stopped. Thebehavior is illustrated by the protool automaton in Figure 4.6. It ontainspostonditions that guarantee the e�ets of exeution of the routines andhas the initial ondition ¬isStarted(). Moreover, the all of routine downhas a preondition requiring that a ertain revolution speed must be reahed(rpmReached()).The interfae ICooler for the ooler omponent delares the routines
start and stop, as well as the funtion isCooling. The ooler omponentkeeps the temperature of the driller at an aeptable level. Its behavior isdesribed by the protool automaton shown in Figure 4.7. It desribes thatthe ooler an be started and stopped. Additionally, the e�ets of the tworoutines are spei�ed as postonditions.
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INTERFACE IDriller
ATOMIC ROUTINE start();
ATOMIC ROUTINE stop();
ATOMIC ROUTINE down();
ATOMIC ROUTINE up();
FUNCTION isStarted() : BOOL;
FUNCTION isDrilling() : BOOL;
FUNCTION rpmReached() : BOOL;

END IDriller

INTERFACE ICooler
ATOMIC ROUTINE start();
ATOMIC ROUTINE stop();
FUNCTION isCooling() : BOOL;

END ICoolerListing 4.3: Interfaes of a driller and a ooler omponent
Pre : rpmReached()

Post : isDrilling()
Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?Figure 4.6: Protool automaton for the IDriller interfae.
start! start?

stop!stop?

Post : isCooling()

Post : ¬isCooling()Figure 4.7: Protool automaton for the ICooler interfae.4.4 ConstraintsPropositional onstraints desribe safety properties (refer to Setion 2.2.1)that must be true in every state of the system ("something bad will neverhappen"). In ontrast to invariants, onstraints are not maintained by thephysial world, but rather desribe that possibly fatal states must not bereahable.



56 CHAPTER 4. CONTRACTS AND CONSTRAINTSConstraints de�ne relationships between several omponents and there-fore do not belong to a ontrat of a single omponent. For example, imaginea omponent having multiple subomponents. The subomponents are in-dependent as they have separate ontrats desribing their loal behavior,disregarding the existene of other omponents. This strit separation ofomponents allows for simple exhange of omponent implementations. Nev-ertheless, it is neessary to provide mehanisms to synhronize two or moreontrats, i.e., to desribe states that the ombination of those omponentsshould never reah.Let's assume, there is a omponent c with subomponents with interfaes
I1, I2, . . . In where eah interfae Ii onsists of the elements Ii = 〈Ri, Fi, Ei〉.Then we assoiate with the omponent c a onstraints Constrc being a logialproposition over symbols f ∈

⋃
i Fi.Assume we have a drilling mahine as de�ned above. In this example, aonstraint is that the driller must not be drilling before the ooler is ool-ing. Similarly, the ooler must not be stopped, while the driller is drilling.Thus, the proposition desribing this onstraint is ¬(driller.isDrilling() ∧

¬cooler.isCooling()).Remark: In order to avoid name lashes in onstraints, funtionsymbols are quali�ed with the name of the subomponent theybelong to.4.5 NotationsIn the following, we introdue two di�erent notations for desribing ontrats.The �rst notation only allows us to desribe valid all sequenes. The seondnotation is more powerful and allows speifying all aspets of a ontrat.4.5.1 EBNF NotationThis notation is based on the standard meta language EBNF (Extended BNF,ISO 14977 [ISO96b℄). The notation does not make use of non-terminal sym-bols, but eah prodution desribes the omplete ontrat for an interfaeas a regular expression. The terminal symbols allowed are all routine names
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. . .

. . . . . .1 . . .2
(r1, call)

(r1, ret)

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)

τ

r1 r1 r2 [...] {...} (...1 | ...2)Figure 4.8: Translation of EBNF to protool automata (. . . stands for anarbitrary subexpression).in the set R (see protool automata above), denoting the routines of theMonao interfae, to whih the ontrat belongs.The following EBNF metasymbols are available (... stands for an arbitrarysubexpression):� [...] The ontained subexpression is optional.� {...} The ontained subexpression an be repeated arbitrary manytimes (inluding zero times).� (...) Groups subexpressions.� (... | ...) Separator for alternative subexpressions. The subexpressionsare hosen nondeterministially.� . (period) Terminates the de�nition of a protool ontrat.The onversion of terminal symbols and the metasymbols into protoolautomata is straight-forward. Figure 4.8 shows the resulting protool auto-mata for single symbols, symbol sequenes and the presented metasymbols.Routine symbols are onverted into an automaton onsisting of three nodes,onneted by a all and a return transition. The �rst node is the initialstate, the intermediate state represents the running routine, the last stateis the state after the routine is exeuted. Sequenes of terminal symbols aretranslated by reating the protool automata of individual symbols and thenmerging the end state of the �rst symbol's protool automaton with the ini-tial state of the seond symbol's protool automaton. The metasymbols for
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start! start? stop! stop?

down?up!

down!up?Figure 4.9: Protool automaton resulting from Listing 4.4.optionality add a τ transition from the initial state to the end state of thesubexpression, thus allowing to omit the subexpression. The metasymbolsfor repetition merge the initial and the end state to a ommon state whih isthe initial state of the resulting automaton. Alternative subexpressions arereated by merging all initial states and all end states of the subexpressions.Appendix C gives a full listing of the grammar of the EBNF notation.The EBNF notation is demonstrated by the following example. Let's as-sume we have an interfae IDriller delaring the routines start, stop,
down, and up. The intended behavior of the interfae is, that any omponentimplementing this interfae should �rst be started, then be moved down andup in turn and eventually be stopped. The protool ontrat for IDrillerin EBNF notation is listed in Listing 4.4.
IDriller = start { down up } stop .Listing 4.4: Contrat for IDriller in EBNF notationFigure 4.9 shows the protool automaton resulting from the ontrat forthe IDriller interfae.4.5.2 Detailed Protool Contrat NotationThis notation expliitly enumerates all states of the protool automaton,together with all transitions between the states and the initial, pre-, andpostonditions as well as the invariants.The notation starts with the delaration of the Monao interfae, fol-lowed by the initial ondition, the invariants and a list of state delarations.A state delaration delares a state with a unique identi�er (unique withinthe protool ontrat) followed by a list of pre- and postonditions for thestate. Then all outgoing transitions are listed. A transition is either a routineall, or a routine return, spei�ed with the routine name followed by a ! or



4.5. NOTATIONS 59
Interface IDriller d [Initial: NOT d.isStarted()]:
initial s0 = start!s1.
s1 [Post: d.isStarted()] = start?s2.
s2 = stop!s3 down!s4.
s3 [Post: NOT d.isStarted()] = stop?s7.
s4 = down?s5.
s5 = up!s6.
s6 = up?s2.
s7 = .Listing 4.5: Contrat for IDriller in detailed protool ontrat notationa ? respetively, or a τ -transition.Imagine that we want to extend the protool ontrat in Figure 4.9 byadding the state property isStarted, modeled as a Boolean funtion in the
IDriller interfae. Listing 4.5 shows this extended protool ontrat for
IDriller in the detailed protool ontrat notation. The resulting ontratis pitured in Figure 4.10. Note that states s1 and s3 now have a postondi-tion.For sake of brevity, names of states are hosen very short. For a betterreadability one would hoose more desriptive state names like init, starting,started, and so forth.In summary, the detailed protool ontrat notation is muh more expres-sive, sine it an be used to desribe all features of a ontrat. In pratie,one would often start with an EBNF desription of a ontrat, whih anbe translated into protool automata and then bak into the detailed pro-tool ontrat notation. Heneforward, one would only adapt the generateddetailed protool ontrat notation by adding pre- and postonditions, in-variants, and initial onditions as neessary.Appendix D gives a full listing of the grammar of the detailed protoolontrat notation.4.5.3 Constraint NotationConstraints refer to state properties of Monao subomponents (in generaldelared by their interfae). In order to express suh properties, we �rstdelare subomponents and then give onstraints as Boolean propositions.
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s6 s5 s4

s0 s1

Post : isStarted()

s2 s3

Post : ¬isStarted()

s7
start! start? stop! stop?

down?up!

down!up?Figure 4.10: Protool automaton resulting from Listing 4.5.
CONSTRAINT (ICooler cooler, IDriller driller)

[NOT (driller.isStarted() AND NOT cooler.isCooling())]Listing 4.6: Driller/Cooler onstraintListing 4.6 shows the onstraint de�ned above: the onstraint a�ets theomponents cooler and driller implementing the interfaes ICoolerand IDriller respetively. The ondition states that it must never happenthat the driller is started (driller.isStarted()) but the ooler is notooling (NOT cooler.isCooling).Appendix E gives a full listing of the grammar of onstraints.



Chapter 5Implementation Automaton
Chapter 4 introdued the notion of ontrats, protool automata, and on-straints desribing valid behavior of omponents. In this hapter we introduemeans to represent omponent implementations as automata. In Chapter 6then, we will see how our veri�ation approah uses implementation auto-mata to hek them against ontrats and onstraints.Setion 5.1 introdues implementation automata, an automata formalismsimilar to protool automata. Implementation automata re�et the atualsequene of alls in aMonao omponent. In order to reate the implemen-tation automaton of a omponent, it is neessary to reate sub-automata forevery routine of the omponent (f. Setion 5.2). These automata will thenbe inserted into the automaton of the omponent's ontrat. The insertionof the routine automata into the parent omponent ontrat is alled re�ne-ment and presented in Setion 5.3. The implementation automaton therebybeomes an abstrat representation of all possible exeution paths of a om-ponent.5.1 Automata FormalismImplementation automata are similar to protool automata presented in Se-tion 4.2. Implementation automata represent the atual ontrol �ow withina omponent and ontain all alls to subomponents, as well as alls to loalroutines. 61



62 CHAPTER 5. IMPLEMENTATION AUTOMATONFirst, we introdue a formal desription of a Monao omponent.De�nition 5.1 Let C = 〈R, F, E, SC〉 be the desription of a omponentwhere the omponents R, F , E, SC have the following meaning:� R is the set of routine symbols.� F is the set of funtion symbols.� E is the set of event symbols de�ned in the omponent.� SC is the set of subomponents. Let sc ∈ SC be a subomponent.The funtion name(sc) then gives the name of the subomponent, while
type(sc) gives the interfae of the subomponent. Reall that subompo-nents an only be delared with interfae types.Remark:We disregard parameters in the desription of funtionsand routines. Parameters play a minor role inMonao programsin general, and in the veri�ation approah in partiular, whiledisregarding parameters eases the desription.Based on the de�nition of omponents we introdue implementation au-tomata.De�nition 5.2 We all the LTS-based automata formalism for desribingimplementation details implementation automata. An implementation auto-maton is a quintuple IA = 〈S, sinit, A, sfinal, T 〉 desribing an LTS with onlya single initial state, a onstrained set of ations and a �nal state:� S is the set of states.� sinit ∈ S is the initial state.� A = R × {call, ret} ∪ SCR × {call, ret} ∪ {τ} is the set of ations(alphabet). R is the set of routine symbols de�ned in the Monaoomponent (see above). SCR is the set of subomponent routine sym-bols. That means let sc ∈ SC be a subomponent with type(sc) = Isc =

〈Rsc, Fsc, Esc〉 then SCR =
⋃

sc∈SC Rsc. τ is the empty ation repre-senting an unonditional, immediate transition.



5.1. AUTOMATA FORMALISM 63� sfinal ∈ S is the �nal state.� T ⊆ S ×A× S is the transition relation.Remark: In the following, routine symbols of subomponentsare quali�ed with the name of the respetive subomponent
name(sc). For example, onsider a subomponent driller oftype IDriller. The symbol for the subomponent's routine
start would then be driller.start.Additionally, two funtions are introdued to represent onditions at-tahed to states of the implementation automaton. In the following, ondi-tions are logial propositions over all funtion symbols of subomponents plusnumerial and Boolean onstants. That means that we use the funtion sym-bols from Fsc as logial variables. Funtions with numerial return type anbe used with relational operators and numerial onstants. We allow the om-bination of logial expressions with the logial operators ∧, ∨, and ¬. Thatmeans let sc ∈ SC be a subomponent with type(sc) = Isc = 〈Rsc, Fsc, Esc〉then allowable funtion symbols are ⋃

sc∈SC Fsc. We denote the set of alllogial propositions over symbols f ∈
⋃

sc∈SC Fsc as C.The funtions to represent onditions attahed to states are:� CFC : S → C is the funtion mapping states to ontrol �ow onditions.These onditions stem from ontrol �ow statements like IF, WHILE or
WAIT and are valid at the assoiated states.� Post : S → C is the funtion mapping states to postonditions. Thesepostonditions stem from the ontrat of the omponent and need tobe veri�ed in the omponent implementation. For details on these post-onditions, see Setion 6.6.1.Figure 5.1 shows the overall proess of reating an implementation auto-maton: First, the automata of the routines are reated. These automata arethen inlined into the omponent's protool automaton wherever a all to therespetive routine is found. The automaton of a routine may even be inlinedmultiple times, if there is more than one all in the protool automaton. Inlin-ing routine alls is only possible beauseMonao disallows reursive routinealls (Setion 3.3.1). In the following, we show the onstrution proess indetail.



64 CHAPTER 5. IMPLEMENTATION AUTOMATONMonao Interfae Contrat+Routine a() Routine b()

. . .a . . .b

a!

a?

b!

b?

Interfae Contrat
ImplementationAutomaton
. . .a . . .bFigure 5.1: The full implementation automaton of a omponent is built fromthe implementation automata of its routines, inlined into the omponent'sprotool automaton.5.2 From Monao to an AutomatonThis setion desribes how an implementation automaton is reated froman existing implementation of a Monao omponent. We will start by �rstde�ning how routine alls are translated to implementation automata. Then,we will show onatenation of implementation automata to model a sequeneof routine alls (or other statements). The last part of this setion deals withMonao ontrol �ow statements and their translation to implementationautomata.5.2.1 Routine CallsRoutine alls to subomponents are the essential statements upon whih webuild implementation automata. The following ode example shows a all tothe routine RoutineA of the subomponent subc.
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subc.RoutineA();Listing 5.1: Calling a ROUTINE of a subomponentRemark: Calls of omponent routines (ontrary to subompo-nent routines) are treated as if the statements of the routine wereinlined at the loation of the routine all.As in protool automata, routine alls are modeled by two transitions: the�rst transition models the all of the routine (r, call), the seond transitionmodels the return of the routine all (r, ret).De�nition 5.3 A all of a routine r of a subomponent reates an imple-mentation automaton P as follows:� SP = {s, s′, s′′} is the set of states neessary to express a all. The state

s is the state before the all, the state s′ is the state during the all andthe state s′′ is the state after the all.� sinit
P = s is the state before the routine all.� AP = {(subc.RoutineA, call), (subc.RoutineA, ret)} is the set of a-tions used in this implementation automaton.� sfinal
P = s′′ is the state after the all of the routine.� TP = {(s,(subc.RoutineA, call), s′),(s′, (subc.RoutineA, ret), s′′)} is theset of transitions between the states.Remark: If the alled routine r is atomi (f. Setion 3.3.1) thenthe property isAtomic(s′) holds.Figure 5.2 shows an implementation automaton that models suh a simpleroutine all.Remark: The presented notation of implementation automataonly ares about routine alls to subomponents and WAIT/IFstatements (for knowledge extration). Therefore all other state-ments (exept for ontrol �ow statements) like assignment state-ments are ignored.
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s

s′

s′′

(r, call) ∈ Acall

(r, ret) ∈ AretFigure 5.2: Implementation automaton for a simple routine all.5.2.2 Statement SequenesIn imperative programming languages �Monao is one of them � programstypially onsist of statements that are exeuted in sequene. To re�et asequene of routine all statements, implementation automata an be on-atenated. The following ode example shows the sequene of two routinealls.
subc.RoutineA();

subc.RoutineB();Listing 5.2: Calling two ROUTINEs of a subomponentStatement sequenes, suh as two onseutive routine alls are generatedby automaton onatenation. The onatenation simply merges the �nal stateof the implementation automaton of the �rst statement with the initial stateof the implementation automaton of the seond statement.De�nition 5.4 In general, the onatenation (sequential omposition) P ◦Qof two implementation automata P and Q is de�ned as follows:� SP◦Q = SP ∪ SQ \ sinit
Q . The set of states onsists of the states of bothimplementation automata, without the initial state of the seond auto-maton.� sinit

P◦Q = sinit
P . The initial state of the �rst automaton remains the initialstate of the resulting automaton.� AP◦Q = AP ∪ AQ. The set of ations is the union of the ations of thetwo implementation automata.
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P◦Q = sfinal

Q . The �nal state of the seond automaton remains the�nal state of the resulting automaton.� TP◦Q = TP ∪ {(s, a, s′) ∈ TQ | s 6= sinit
Q } ∪ {(s

final
P , a, s′) | (sinit

Q , a, s′) ∈

TQ} ∪ {(s, a, sfinal
P ) | (s, a, sinit

Q ) ∈ TQ}. The transitions in the onate-nated implementation automaton onsist of all transitions of the �rstautomaton plus all transitions of the seond automaton where transi-tions involving the initial state are bent over to the �rst automatons�nal state.
s1

s′1

s′′1

(r1, call)

(r1, ret)

s2

s′2

s′′2

(r2, call)

(r2, ret)

s1

s′1

s′′1

s′2

s′′2

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)(a) (b) ()
P Q P ◦QFigure 5.3: Implementation automata for simple routine alls ((a) and (b))and the onatenation () of the two protool automata.Figure 5.3 () shows the onatenation of two automata. Note that P ◦Qmeans that P is exeuted prior to the exeution of Q.5.2.3 Wait StatementThe WAIT statement ensures that a ertain ondition holds by suspendingexeution until the ondition holds. Therefore we an use the ondition inthe implementation automata by adding this knowledge as a ontrol �owondition to a new state s.



68 CHAPTER 5. IMPLEMENTATION AUTOMATON
sCFC: cFigure 5.4: Implementation automaton for a wait statement.De�nition 5.5 Adding new knowledge through the WAIT statement reatesa single-state automaton as follows:� Swait = {s}. s is the single state of the implementation automaton.� sinit

wait = s. The single state s is the initial state.� Await = ∅. No ations are in this single state automaton.� sfinal
wait = s. The single state s is the �nal state.� Twait = ∅. There are no transitions in this automaton.� CFCwait = {(s, {c})} The CFC funtion for state s maps s to theondition of the WAIT statement.Figure 5.4 shows the implementation automaton resulting from a WAITstatement. Listing 5.3 shows a WAIT statement waiting for the funtion

isStarted of the subomponent subc to beome true.
WAIT (subc.isStarted());Listing 5.3: A Monao WAIT statement waiting for a subomponent.5.2.4 Branh StatementThe Monao IF statement an be used to branh the ontrol �ow. It allowsone to speify any number of IF branhes and one optional ELSE branh.Depending on the evaluation of the onditions, the ontrol �ow hooses oneof the branhes.The semantis of the IF statement allows us to regard only a simple IFwith an ELSE branh, sine ELSIF branhes an be seen as ELSE branheswith an IF statement.



5.2. FROM MONACO TO AN AUTOMATON 69To reate the implementation automaton for an IF statement, �rst theimplementation automata of the IF and ELSE branh are built separately. Ifno ELSE branh exists, the implementation automaton for the non-existentbranh onsists of only a single state, being the initial and �nal state. Thebranhing of the two implementation automata reates a ommon initial stateas well as a ommon �nal state.De�nition 5.6 The branhing automaton of two implementation automata
P and Q, where P desribes the IF branh, and Q desribes the ELSE branhof an IF statement, an be de�ned as follows:� SP |Q = SP ∪ SQ ∪ {sI , sF} where sI and sF are new states.� sinit

P |Q = sI is the new initial state. This state is where the automatonbranhes.� AP |Q = AP ∪ AQ is the ombined set of ations.� sfinal
P |Q = sF . The new state sF is the new �nal state. This is where thebranhes merge.� TP |Q = TP ∪TQ∪{(s

final
Q , τ, sF ), (sfinal

P , τ, sF ), (sI , τ, s
init
P ), (sI , τ, s

init
Q )}.The set of transitions is extended by τ -transitions from the ommoninitial state sI to the initial states of P and Q. Similarly, τ -transitionsfrom the �nal states of P and Q to the ommon �nal state sF are added.� CFCP |Q = CFCP ∪ CFCQ ∪ {(s

init
P , {c}), (sinit

Q , {¬c})} is the ontrol�ow onditions funtion, where c is the branhing ondition.Figure 5.5 shows the automaton for an IF statement that has twobranhes. The onditions of the branhes are as re�eted in the automa-ton as ontrol �ow onditions (CFC) at the branhing states.5.2.5 RepetitionsThe repetition of a blok using Monao's WHILE statement is done by �rstreating the implementation automaton P of the blok that is to be repeated.The next step is to onnet the �nal state of the blok with a τ -transition tothe initial state.
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sI

sinit
PCFC: c sinit

QCFC: ¬c

P Q

sfinal
P

sfinal
Q

s′′1

τ

τ

τ

τFigure 5.5: Implementation automaton for the Monao IF statement. Theautomaton shows two branhes.De�nition 5.7 The implementation automaton for repeated exeution of aode blok P with Monao's WHILE statement is de�ned by:� S	 = SP ∪{sI , sF} is the set of states, where sI and sF are new states.� sinit
	 = sI is the new initial state.� A	 = AP . The set of ations remains the same.� sfinal
	 = sF is the single �nal state.� T	 = TP ∪{(sI , τ, sF )}∪{(sI , τ, s

init
P )}∪{(sfinal

P , τ, sI)}. Transitions areadded from sI to the old initial state and the new �nal state, as well asfrom the old �nal state to sI .� CFC	 = CFCP ∪ {(s
init
P , c)} ∪ {(sF ,¬c)} is the ontrol �ow onditionfuntion, where c is the WHILE ondition.Figure 5.6 shows the implementation automaton resulting from the odein Listing 5.4.
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WHILE c

BEGIN

subc.RoutineA();

subc.RoutineB();

END Listing 5.4: WHILE statement
sI

sFCFC:¬c sinit
QCFC:c
P

sfinal
Q

τ
τ

τ

Figure 5.6: Implementation automaton for the Monao WHILE statement.5.2.6 Parallel StatementThe PARALLEL statement is used to exeute ode in parallel. The followingexample shows the parallel exeution of two routine alls.
PARALLEL

subc.RoutineA(); // first parallel code block

||

subc.RoutineB(); // second parallel code block

END Listing 5.5: PARALLEL statementThe implementation automaton for the PARALLEL statement is reated byasynhronous omposition of the implementation automata of the parallelode bloks. We generate all possible interleavings of the parallel ode bloks.The de�nition of asynhronous parallel omposition is assoiative [Bie08℄,



72 CHAPTER 5. IMPLEMENTATION AUTOMATONtherefore I1 ‖ I2 ‖ · · · ‖ In an be onstruted by �rst reating the parallelautomaton I1 ‖ I2, and then using the resulting automaton to reate (I1 ‖

I2) ‖ I3. Therefore, we show the interleaving of two parallel bloks only.De�nition 5.8 Let P , Q be two implementation automata, eah represent-ing a ode blok. The asynhronous omposition P ‖ Q of the two automataan be de�ned as:� SP‖Q = SP × SQ. The set of states of two parallel automata is theCartesian produt of the sets of the two automata.� sinit
P‖Q = (sinit

P , sinit
Q )� AP‖Q = AP ∪ AQ� sfinal

P‖Q = (sfinal
P , sfinal

Q ). The �nal state is the pair of the �nal states ofthe two automata.� TP‖Q = {((sP , sQ), a, (s′P , sQ)) | (sP , a, s′P ) ∈ TP}

∪ {((sP , sQ), a, (sP , s′Q)) | (sQ, a, s′Q) ∈ TQ}. Transitions in the parallelautomaton desribe the possible interleaving of the two automata.Figure 5.7 shows the parallel asynhronous omposition of two automata
P and Q. The �gure learly illustrates that by interleaving, any sequeneof transitions is possible, as long as the sequene was possible in one of theoriginal automata.Interleaving of Atomi CallsWhile the approah of interleaving all states of two parallel automata re�etsthe semantis of Monao, it does not re�et the fat, that alls to atomiroutines an not be interrupted (onfer to Setion 3.3.1). Therefore, if astate represents the state in an atomi routine all, then this state is notinterleaved.De�nition 5.9 We rede�ne the transition relation TP‖Q as follows:� TP‖Q = {((sP , sQ), a, (s′P , sQ)) | (sP , a, s′P ) ∈ TP ∧ ¬isAtomic(sQ)}

∪ {((sP , sQ), a, (sP , s′Q)) | (sQ, a, s′Q) ∈ TQ ∧ ¬isAtomic(sP )}.
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(r2, call)

(r2, call)

(r2, call)

(r1, ret)

(r1, ret)

(r1, ret)

(r2, ret)

(r2, ret)

(r2, ret)(a) (b) ()Figure 5.7: Implementation automaton for the Monao PARALLEL state-ment (). The automaton shows the two parallel bloks P (a) and Q (b) beinginterleaved resulting in the automaton P ‖ Q.Figure 5.8 shows the interleaving of alls to the routines r1 and r2, wherethe all to r1 is atomi.5.2.7 Asynhronous Event HandlingMonao o�ers an asynhronous event handling mehanism similar to the
try − catch onstrut of C/C++ style languages. Monao's event handlingmehanism allows one to guard the exeution of a ode blok by an arbitraryondition. The semantis is, that the exeution of the guarded blok is ter-minated if the ondition turns true. Exeution then ontinues in the handlerode.Again, handling of events within a blok is ahieved by �rst reating theimplementation automaton of the blok that is guarded by the handler (P )and the implementation automaton of the handler ode (Q). The next stepis to reate an event transition e from every state that is between a call anda ret-transition in the guarded blok to the �rst state of the handler ode. If
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s1, s2

s′1, s2 s1, s
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s′′1, s
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(r1, call)
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(r2, call)

(r2, call)

(r1, ret)

(r1, ret)

(r1, ret)

(r2, ret)

(r2, ret)Figure 5.8: Implementation automaton for the Monao PARALLEL state-ment where routine r1 is ATOMIC and thus isAtomic(s′1) holds. In ontrastto Figure 5.7 there is no interleaving of the state s′1.
BEGIN
subc.RoutineA(); // block guarded by the handler

ON subc.event
subc.RoutineB(); // handler code

END Listing 5.6: ON handlerthe handler automaton is an empty automaton, transitions are reated fromany state of the guarded blok to the �nal state. At the end of the handlerblok, exeution ontinues after the guarded blok.De�nition 5.10 Adding an event handler automaton Q for an event ondi-tion c to an implementation automaton P is de�ned as follows:� SP Q = SP ∪ SQ is the set of states.� sinit
P Q = sinit

P . The initial state of the guarded automaton remains is theinitial state of the resulting automaton.



5.2. FROM MONACO TO AN AUTOMATON 75� AP Q = AP ∪ AQ is the set of ations.� sfinal
P Q = sfinal

P . The �nal state of the guarded automaton remains.� TP Q = TP ∪ TQ ∪ {(s, τ, s
init
Q ) | ∃s′, r : (s′, (r, call), s) ∈ TP

∧ ¬isAtomic(s)} ∪ {(sfinal
Q , τ, sfinal

P )}. Event transitions from all all-sites of non-atomi routines to the initial state of the handler automa-ton are added.� CFCP Q = {(sinit
Q , {c})} ∪ {(s,¬c) | s ∈ SP ∧ s 6= sinit

P ∧ s 6= sfinal
P } isthe CFC funtion, where c is the ondition of the ON handler (if suha ondition exists). The ondition is true in the initial state of the onhandler and is false in the guarded blok.

CFC: ¬c sinit
Q CFC: cCFC: ¬c QCFC: ¬c sfinal

Q

(r1, call)

(r1, ret)

(r2, call)

(r2, ret)

τ

τ

τFigure 5.9: Implementation automaton for the Monao event handling on-strut.Figure 5.9 shows the implementation automata for a ode blok (show inFigure 5.10 and an event handler blok and how the handler blok is attahedto the guarded ode blok.Using the de�nitions above, we are able to reate implementation auto-mata for arbitrary Monao ode within a single routine. The automatonre�ets the sequenes of routine alls, routine returns and events that arepossible in the respetive Monao ode.
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BEGIN
r1();
r2();

ON c
// Q

END Figure 5.10: Code for the event handling example in Figure 5.9.5.3 Automata Re�nementAutomata re�nement desribes the proess of reating an implementationautomaton for a omponent. This is done, by reating implementation auto-mata for all routines of the omponent. These automata are then inlined intothe protool automaton of the omponent, wherever a all to the respetiveroutine is found. Figure 5.1 gives an overview of this proess. This way, theabstrat desription of the parent omponent (C, the protool automaton ofthe omponent interfae) is inrementally re�ned to a more onrete one (C ′,the implementation automaton of the omponent) [Sif01℄.De�nition 5.11 We all the replaement of alls within a protool automa-ton PAC by the implementation automaton IAr that models the implementa-tion of the omponent's routine r the re�nement of PAC by IAr. We denotethis re�nement PAC ⋖ IAr. Let PAC = P , IAr = Q, and for eah all siteof routine r, de�ne the states callStarti, inCalli, callReti ∈ SP desribing aall site i of routine r in P . The three states therefore are onneted with thetransitions (callStarti, (r, call), inCalli) and (inCalli, (r, ret), callReti).The automaton resulting from inlining a routine all at all site i , IAP⋖Qis formally de�ned by� SP⋖Q = (SP ∪ SQ) \ {inCalli}. The resulting set of states ombinesthe two automata's states without the state modeling the all exeution(inCalli).� sinit
P⋖Q = sinit

P . The initial state of P remains.� AP⋖Q = AP ∪AQ� sfinal
P⋖Q = sfinal

P . The �nal state of P remains.
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a

ballStart sinit
Q

cinCall Q

dallRet sfinal
Q

e

a

(r, call)

(r, ret)

b

τ

τ

Figure 5.11: The re�nement of the protool automata P and with the im-plementation automaton Q of routine r inlines Q into P (IP⋖Q) and removesthe node of the original all.� TP⋖Q = (TP ∪ TQ) \{(s, a, s′) ∈ TP | s = inCalli ∨ s′ = inCalli}

∪{(callStarti, τ, s
init
Q ), (sfinal

Q , τ, callReti)}. For the all site i, τ transi-tions to the initial state of Q, as well as τ transitions from the �nalstates of Q to the the return of the all are added.Remark: At eah all site, a separate opy of the implementationautomaton of the routine is inlined, as we inline one all site afterthe other.In other words, the re�nement of a protool automaton by the imple-mentation automaton of a routine inlines a opy of the implementation au-tomaton wherever there is a all to this routine in the protool automaton.The resulting automaton is the basis for veri�ation and semanti assistanepresented in Chapter 6 and Chapter 7.Figure 5.11 shows the re�nement of the protool automaton P by theimplementation automaton of the routine Q. The implementation automatonis alled Q, therefore the re�nement an be denoted as IP⋖Q.
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Chapter 6Veri�ation Approah
This hapter presents the veri�ation algorithm developed as a entral partof this thesis. The results of this algorithm are the basis for the end-userassistane tools presented in Chapter 7.Setion 6.1 gives an overview of the approah. The desription of theveri�ation algorithm is split into 4 main parts. Setion 6.2 introdues thebasi veri�ation algorithm that establishes a mapping between a omponentimplementation and the protool ontrats of its subomponents. Setion 6.3presents the operators hosen for the knowledge update between states inthe implementation automaton. Setion 6.4 introdues onstraint heking,while Setion 6.5 explains how unreahable states an be found. Finally, Se-tion 6.6 presents how a omponent ontrat is heked against the omponentimplementation.6.1 OverviewThe appliation of the veri�ation algorithm is depited in Figure 6.1. First,an automaton is reated (as outlined in Chapter 5) whih represents the im-plementation of aMonao omponent with the ontrol �ow and the routinealls to its subomponents (1). Then, a weak simulation relation is used toset up a mapping (3) between the states in the implementation automatonand the states in the protool automata of the ontrats (2) of the sub-omponents. In the same step, the states of the implementation automata79
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ContratsConstraints
MonaoCode (1)Impl. Automaton

(2)Protool Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) SemantiErrors(6) ProposalRepair(7) Visualization(8)

Figure 6.1: State mapping overview.are assoiated with knowledge in the form of propositions derived from thepropositions in the protool automata and the onditional statements in theimplementation. Finally, the state mapping and assoiated knowledge is usedto verify onstraints.The annotated implementation automaton (4) is then used in variousend-user support systems as follows:� Reporting semanti errors (5) : The system gives feedbak about vio-lations of ontrats and or onstraints. The feedbak is shown at therespetive error positions in the editor.� Proposing valid alls (6): Based on the ontrats of the subomponentsand onstraints between omponents the system proposes valid routinealls.� Proposing semanti program repair (7): Component violating ontratsor onstraints an be hanged suh that the program omplies withthe ontrats and onstraints. This system gives proposals on whihhanges are neessary to repair a omponent.� Visualizing omponent state (8): The system uses the state mappingresults at a spei� loation in the ode to visualize the state of thesubomponents at this exat loation.Those end-user support systems will be subjet of Chapter 7.



6.2. STATE MAPPING 816.2 State MappingThis setion introdues the state mapping algorithm for establishing a simula-tion relation between a omponent's implementation automaton and the pro-tool automata of its subomponents. Setion 6.2.1 introdues weak simula-tion relations. Setion 6.2.2 disusses the prinipal approah and Setion 6.2.3presents the state mapping algorithm. Finally, Setion 6.2.4 onludes withan example.6.2.1 Weak SimulationA simulation between automata desribes that eah transition in one auto-maton has a ounterpart in the seond automaton. The automata are saidto have similar behavior (the seond automaton may have more behavior).A weak simulation [Bie08,Mil89℄ is a simulation disregarding unobservableinternal events (τ -transitions).De�nition 6.1 Let sP , sQ be states of the automata P and Q, then a weaksimulation relation . between these states is de�ned as follows: sP . sQ ⇔

∀a ∈ AP \ {τ}, s
′
P ∈ SP : (sP

τ∗a
−−→ s′P ⇒ ∃s

′
Q ∈ SQ : (sQ

τ∗a
−−→ s′Q ∧ s′P . s′Q))where the notation s

a
−→ s′ stands for ∃(s, a, s′) ∈ T and s

τ∗a
−−→ s′ stands for

s
τ
−→ s0

τ
−→ . . .

τ
−→ sn

a
−→ s′. An automaton Q weakly simulates an automaton

P i� the initial state of Q weakly simulates the initial state of P : sinit
P . sinit

Q .Weak simulation is often used to verify an implementation against itsspei�ation. If implementation . specification the implementation's be-havior is a subset of the behavior allowed by the spei�ation.6.2.2 ApproahThe weak simulation desribed above an be used to verify the implemen-tation of a omponent against the sequening onstraints spei�ed by theprotool automata of its subomponents. In order to be able to desribe theweak simulation between the implementation automaton and a protool au-tomaton of a subomponent, we need to ignore all transitions resulting from
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IA IA/PAc1Figure 6.2: Statemapping projetion of the implementation automaton onthe protool automaton of omponent c1 (PAc1).alls to other subomponents. We simply replae these irrelevant transitionsby τ -transitions and all this a projetion of the implementation automatonon the protool automaton of a spei� omponent.De�nition 6.2 We de�ne the projetion of an implementation automaton
IA = 〈SIA, sinit

IA , AIA, sfinal
IA , TIA〉 on a protool automaton PA = 〈SPA, sinit

PA ,

APA, Sfinal
PA , TPA〉 as an automaton IA/PA = 〈SIA, sinit

IA , APA, sfinal
IA , TIA/PA〉where TIA/PA = {(s, a, s′) ∈ TIA|a ∈ APA} ∪ {(s, τ, s

′)|(s, a, s′) ∈ TIA ∧ a /∈

APA}.This de�nition guarantees that all transitions in the resulting automatonare labeled with ations valid in the protool automaton PA. The examplein Figure 6.2 shows how projetion replaes transitions involving subompo-nents other than PA by τ -transitions.In the state mapping algorithm we establish a weak simulation relationbetween the implementation automaton and eah of the subomponent proto-ol automata. Therefore a omponent C omplies with the protool automataof its subomponents i� ∀i : (IA/PAi) . PAi.De�nition 6.3 We de�ne the mapping M of states of the implementationautomaton to states of the subomponent protool automata as M : SIA →
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PAc1 IA/PAc1 IA IA/PAc2 PAc2Figure 6.3: State mapping results with projetion of the implementationautomaton IA on the protool automata of omponent c1 (PAc1).
P(×SPAi

). ×SPAi
denotes the ross produt of the states of all subompo-nents. Thus, this mapping relates a set of vetors of subomponent statesto a state of the implementation automaton. One suh vetor desribes thestate of all subomponents. If multiple vetors are in the set, then the systeman be in di�erent states when exeution reahes the state implementationautomaton.

Let sIA be the urrent state in IA and sPAi
be the urrent state inthe subomponent protool automaton PAi. Assume, a transition tIA =

(sIA, a, s′IA) ∈ TIA, a 6= τ exists in the implementation automaton. In orderto have a weak simulation relation, a similar transition possibly reahableby intermediate τ -transitions (sPAi
, a, s′PAi

) ∈ TPAi
needs to exist in the or-responding protool automaton. If so, a mapping between s′IA and s′PA isestablished:M(s′IA) =M(s′IA) ∪ {(sPA1, . . . , s

′
PAi

, . . . , sPAn
)}.Figure 6.3 shows the result of the state mapping of an implementationautomaton and two protool automata for the subomponents c1 and c2.For reasons of larity, the projetion automaton will be omitted from �guresheneforward.



84 CHAPTER 6. VERIFICATION APPROACH6.2.3 AlgorithmThis setion outlines the algorithm implementing the state mapping approahdesribed above. The algorithm applies depth-�rst searh (DFS ) to �nd on-trat violations and annotates the states of the implementation automatonwith mapping information.Instead of establishing the weak simulation for eah subomponent sepa-rately, the algorithm does the projetion on the �y. This allows the algorithmto establish the weak simulation in one depth-�rst searh traversal of the im-plementation automaton. Moreover, rather than using the appliation stakby reursion, this algorithm is implemented iteratively, thus maintaining aseparate stak of searh positions. A searh position holds a situation identi-�ed by a state in the implementation automaton and a orresponding statefor eah subomponent protool automaton. The searh positions are on-neted through referenes to a predeessor searh position, suh that it ispossible to follow the exeution path leading to a ertain state.De�nition 6.4 A searh position holds information about a state s of theimplementation automaton as well as the mapped states of the subom-ponent protool automata. A searh position therefore is a tuple SP =

〈s, (t1, . . . , tn)〉, where� s ∈ SIA is a state of the implementation automaton.� (t1, . . . , tn) de�nes the subomponent mapping, the ative states in thesubomponent protool automata. For eah subomponent there is onestate in whih this omponent is in this situation (ti ∈ SPAi
).A pseudo-ode version of the algorithm is shown in Figure 6.4. The algo-rithm starts by assuming a mapping between the initial state of the imple-mentation automaton sinit and the initial states of the subomponent pro-tool automata tinit

i (line 1). While the searh stak is not empty, the topsearh position is removed from the stak (line 3) and the (all- and return-)transitions leaving the implementation state s of the searh position are veri-�ed to exist in the orresponding subomponent protool automaton. If suha transition exists, the mapping between the suessor in IA and the sues-sor in the subomponent protool automata is established (lines 12 and 19).



6.2. STATE MAPPING 85Input: implementation automaton, subomponent protool automataResult: annotated implementation automaton, list of violations
push(sinit, (tinit

1 , ..., tinit
n ))1 while searh positions on searh stak do2

〈s, (t1, . . . , tn)〉 := pop()3 foreah a suh that ∃s′ : (s, a, s′) ∈ TIA do4 if a 6= τ ∧ ¬∃i : (ti, τ
∗a, t′) ∈ TPAi

then5 violation deteted at state s6 end7 foreah s′ suh that (s, a, s′) ∈ TIA do8 if a = τ then9 if (t1, . . . , tn) /∈M(s′) then10
push(s′, (t1, . . . , tn))11
M(s′) :=M(s′) ∪ {(t1, . . . , tn)}12 end13 ontinue14 end15 foreah t′i suh that (ti, τ

∗a, t′i) ∈ TPAi
do16 if (t1, . . . , t

′
i, . . . , tn) /∈M(s′) then17

push(s′, (t1, . . . , t
′
i, . . . , tn))18

M(s′) :=M(s′) ∪ {(t1, . . . , t
′
i, . . . , tn)}19 end20 end21 end22 end23 end24 Figure 6.4: DFS veri�ation algorithm.If the same mapping did not already exist, a new searh position with thenew suessor of the transition in the implementation automaton and thenew state mapping is pushed on the searh stak (lines 11 and 18). If no suhtransition exists, a violation has been found (line 5). These steps are repeateduntil a mapping for eah state has been found, or a violation is deteted.State mapping violations are due to invalid transitions in the implemen-tation automaton. We an reonstrut a path leading to this violation usingthe searh position hain. Eah searh position links to the searh positionausing this situation. Thus, the searh positions an be seen as path lead-
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Figure 6.5: Driller and ooler omponent.
SUBCOMPONENTS
c : ICooler;
d : IDriller;

ROUTINE drill()
BEGIN
c.start();
d.start();
WAIT d.rpmReached();
d.down();
d.up();

END Listing 6.1: Partial implementation of the driller omponent.ing from the initial state of the implementation automaton to the ontratviolation.6.2.4 ExampleConsider a driller mahine like the one shown in Figure 6.5. The mahineonsists of two subomponents, a driller and a ooler. Contrats exist forthe interfaes of the subomponents IDriller and ICooler, desribingallowable usage patterns of the omponents. The driller mahine ould useits subomponents like shown in Listing 6.1.We an now apply the state mapping algorithm to the implementationautomaton of the driller mahine and the protool automata of its subom-ponents. The result of the state mapping algorithm is depited in Figure 6.6.
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IDrillerdown!up?

Implementa
tion

CF C : d.rpmReached()

ICooler
start! start? stop! stop?

down?up!

start! start? stop!

stop?

c.start! c.start? d.start! d.start? d.down! d.down? d.up! d.up?

Figure 6.6: Result of the state mapping algorithm of the driller omponent.The upper part shows the protool automaton for the IDriller interfae,the lower part shows the protool automaton for the ICooler interfae.In the enter, the implementation automaton for the ode in Listing 6.1 isshown. Dotted lines highlight the state mapping relationM.6.3 Knowledge UpdateWhile the algorithm desribed in Figure 6.4 establishes a weak simulationrelation, the propagation of knowledge in the implementation automatonhas been omitted so far. This setion will detail on situational knowledge,knowledge update and retration, and we will present an extended statemapping algorithm propagating knowledge.Situational knowledge is reated from knowledge obtained from the pro-tool automata (see Pre, Post, and Initial funtions in Setion 4.3) and theimplementation automaton (see CFC funtion in Setion 5.1). Furthermore,we an use the funtion Retract from protool automata to remove invalidknowledge. We use these propositions to annotate eah reahable state of theimplementation automaton with situational knowledge (similar to [Rei01℄).The term situational knowledge refers to the fat, that a state in the imple-



88 CHAPTER 6. VERIFICATION APPROACHmentation automaton may be reahed through di�erent paths in the imple-mentation automaton, thus resulting in di�erent knowledge and a di�erentmapping of subomponent states.When a transition is taken, the situational knowledge of the soure state istransferred to the target state of the transition. It is then updated with newinformation (from protool automata) while keeping the situational know-ledge onsistent (i.e. the onjuntion of all terms in the knowledge base mustbe satis�able). We have adopted tehniques introdued in arti�ial intel-ligene alled belief update [KM91, HR99℄ and employed the SMT solverYies [DdM06℄ to add and remove new information without introduing in-onsistenies.6.3.1 Knowledge Change OperatorsWe introdue a knowledge update operator (f. Setion 2.3.3) onsistent withWinslett's standard semantis [Win90℄ (f. Setion 2.3.4). In ontrast to beliefrevision, a belief update operation hanges a knowledge base due to a hangein the real world. The operation therefore may remove existing informationfrom the knowledge base in order to keep the knowledge base onsistent.De�nition 6.5 Let K be the knowledge base onsisting of a set of logialpropositions k ∈ K and c a logial onjuntion desribing new informationabout the world. Inv denotes the onjuntion of invariant propositions. Theknowledge update operator ⋄ is then de�ned as follows:
K ⋄ c = {k ∈ K | ¬sameSym(k, c) ∧ sat(k ∧ c ∧ Inv)} ∪ c.The prediate sameSym is true, i� the two propositions have at leastone atom (symbol) in ommon. The prediate sat proves satis�ability of aproposition and is omputed by an SMT solver.Remark: We have hosen the SMT solver Yies [DdM06℄ as ane�ient deision proedure for satis�ability of arbitrary formulas.Additionally it provides a simple input language whih an beused in interative mode.Figure 6.7 shows the algorithm for the knowledge update in pseudo ode.Eah ondition in the knowledge base is tested whether its symbols interset



6.3. KNOWLEDGE UPDATE 89with symbols ontained in the new knowledge (line 3). If so, the ondition isremoved from the resulting knowledge base. Otherwise, the ondition is testedwhether it ontradits the new information and the invariants (line 5). If so,the ondition is also removed from the resulting knowledge base. Finally thenew information is added to the knowledge base (line 9).Input: existing knowledge K, new information c, invariants InvResult: new knowledge base K ′

K ′ := K1 foreah k ∈ K do2 if sameSym(k, c) then3
K ′ := K ′ \ {k}4 elsif ¬sat(k ∧ c ∧ Inv)) then5
K ′ := K ′ \ {k}6 endif7 end8

K ′ := K ′ ∪ {c }9 Figure 6.7: Pseudo ode de�ning the knowledge update operator.Similarly, an operator for information retration an be de�ned. The se-mantis of retration is that retrated knowledge an not be guaranteed tohold any longer. It therefore needs to be removed from the knowledge base.De�nition 6.6 Let K be a knowledge base as above, and f a symbol to beretrated. The knowledge retration operator � is then de�ned as follows:
K�f = {k ∈ K | ¬sameSym(k, f)}.Remark: Knowledge retration di�ers from adding ontraditinginformation, in that it does not generate additional information,but stritly removes any knowledge about ertain symbols.These knowledge operators are used in the state mapping algorithm togenerate knowledge while establishing the weak simulation relation. The re-sult of this state mapping algorithm inluding knowledge update is an an-notated implementation automaton, where eah reahable state is annotatedwith a list of situations. Eah situation ontains the subomponent protoolautomata mapping as well as a set of propositions known to be true in thissituation. Setion 6.3.3 gives a detailed de�nition of situations.



90 CHAPTER 6. VERIFICATION APPROACH6.3.2 ExampleIn the following examples di�erent ases for knowledge update in the statemapping algorithm are illustrated.Adding Knowledge Based on Protool AutomataAssume we have a subomponent ooler of interfae ICooler with the pro-tool automaton as de�ned in Figure 6.8, left olumn. The subomponentis used as shown in Listing 6.2, the orresponding implementation automa-ton is depited in Figure 6.8, right olumn. Dotted lines represent the statemapping relation.
SUBCOMPONENTS

ICooler c;

IDriller d;

ROUTINE main()

BEGIN

c.start();

...

ENDListing 6.2: Example ode generating knowledge from a protool automa-ton.The �rst part of Figure 6.8 shows the �rst mapping between the pro-tool automaton and the implementation automaton: the initial states aremapped and the mapping is annotated with the initial knowledge K =

{¬c.isCooling,¬d.isStarted}. Next, the transition c.start! in the implemen-tation automaton is hosen as the only transition from the urrent (initial)state in the implementation automaton. The same transition (though with-out the subomponent pre�x c.) exists in the protool automaton for the
ICooler subomponent c. Therefore, a mapping between these two sues-sor states is established, the knowledge is not yet hanged (sine poston-dition information is added to the knowledge as soon as the state holdingthe postondition is left). The knowledge assoiated with this new mappingtherefore remains K = {¬c.isCooling,¬d.isStarted}.Finally, the next transition c.start? is taken and its ounterpart in theprotool automaton is followed. The postondition of the state in the protool
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start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

start! start?

stop!stop?

Post : isCooling()
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¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

K = {¬c.isCooling,¬d.isStarted}

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

c.start!

c.start?

K = {¬c.isCooling,¬d.isStarted}

K = {¬c.isCooling,¬d.isStarted}

K = {c.isCooling,¬d.isStarted}Figure 6.8: Veri�ation proess: state mapping and knowledge generationfrom protool automaton.automaton is used to update the urrent knowledge. Thereby, the proposition
¬c.isCooling is removed beause it shares symbol isCooling with the newproposition c.isCooling. Finally the new proposition is added to the know-ledge base giving K = {c.isCooling,¬d.isStarted}. Repeated exeution ofthe ode an lead to new mappings of implementation states to the samestates in the protool automaton (even with di�erent knowledge). Similarly,one state in the implementation automaton an be mapped to multiple statesin the protool automaton (possibly with di�erent knowledge per mapping).Adding Knowledge Based on WAIT / IFThis example illustrates how information from the implementation automa-ton is used in the veri�ation proess and how preonditions are veri�ed.Figure 6.9 shows the implementation automaton for the ode snippet in List-ing 6.3, where the system waits for the driller omponent to have reahedfull speed, before the driller lowers.



92 CHAPTER 6. VERIFICATION APPROACH
BEGIN

...

WAIT d.rpmReached();

d.down();

...

ENDListing 6.3: Example ode generating knowledge from the implementationautomaton.Figure 6.9 shows the protool automaton of the ICooler subompo-nent on the left, the protool automaton of the IDriller subompo-nent on the right, and the implementation automaton for the ode snip-pet in the enter. Assume, the knowledge at the state of the CFC on-dition is K = {c.isStarted, d.isStarted}. Before the transition d.down! istaken in the implementation automaton and the protool automaton for the
IDriller interfae of the subomponent d, the knowledge is immediatelyupdated with the CFC ondition. The temporary knowledge therefore is
K = {c.isStarted, d.isStarted, d.rpmReached}.Next, the preondition of the suessor state in the protool automatonof IDriller is veri�ed. Sine K ∧¬Pre is not satis�able, the preondition
d.rpmReached is satis�ed, the transition d.down! is taken, and the mappingbetween the two suessor nodes is established. The knowledge in the seondimplementation state is then K = {c.isStarted, d.isStarted}. It laks thefuntion symbol d.rpmReached, beause this knowledge an no longer beguaranteed as it does not stem from a ontrat guarantee, but from a WAITstatement, and the system may have hanged due to the routine all.Remark: The SMT solver an only show satis�ability or un-satis�ability of formulas. Therefore, a preondition is ful�lled, ifits negation is unsatis�able under a ertain knowledge. It doesnot su�e to show that the preondition and the knowledge aresatis�able.Retrated Knowledge Based on Protool AutomataThis example shows how retration of information from existing knowledgean be used. Figure 6.10 shows the setion of the implementation automaton
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Post : isCooling()
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Figure 6.9: Veri�ation proess: state mapping and knowledge generationfrom implementation protool.for the ode snippet in Listing 6.4, where the system starts the lose move-ment of a ylinder, waits for the ylinder to be losed, and then stops themovement.The protool automaton for the interfae ICylinder of the ylinder sub-omponent states, that as soon as a movement is started, no onlusion aboutthe state of the subomponent an be drawn (Retract : isOpen, isClosed).Assume, we have the knowledge K = {cyl.isOpen} when the veri�ationproess arrives at the �rst state of the implementation automaton shown inFigure 6.10.
BEGIN

...

cyl.startClose();

WAIT cyl.isClosed();

cyl.stop();

...

END Listing 6.4: Example ode showing retration of knowledge.When the transition cyl.startClose! is taken, it leads to a state in theprotool automaton whih is annotated with a set of symbols to retrat. Allpropositions involving retrated symbols are removed from the knowledge.In the example, the proposition cyl.isOpen is removed from the knowledgeand an empty knowledge remains (K = {}). In the next step, temporarily
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Retract : isOpen, isClosedRetract : isOpen, isClosed
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K = {cyl.isOpen}

K = {}
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Figure 6.10: Veri�ation proess: state mapping and knowledge retration.
new knowledge is added from the CFC ondition of the implementation. Thetemporary knowledge thus is K = {cyl.isClosed}. This knowledge stemmingfrom the CFC ondition would only be used if there were a preondition inthe protool automaton. Sine there is no preondition, the CFC onditionis not used and the empty knowledge K = {} remains.
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Post : isClosed()Post : isOpen()

open!

open? close!

close?

v.open!

v.open?

v.close!

v.close?

K = {v.isClosed}

K = {v.isClosed}

K = {v.isOpen}

K = {v.isOpen}

K = {v.isOpen}Figure 6.11: Veri�ation proess: knowledge update with invariants.Knowledge Update with InvariantsThis example shows how invariants in�uene the result of knowledge update.Assume, we have a valve subomponent whih an be opened and losed(atomi routines open() and close()). The funtions delared in the interfaeof the valve subomponent are isOpen and isClosed whih an never be truesimultaneously. We desribe this dependene using the invariant ¬(isOpen∧

isClosed)(the preeding ¬ an be read as never).Listing 6.5 shows an example ode whih uses the valve subomponent.The orresponding implementation automaton is shown in Figure 6.11. Theinteresting part of the knowledge update is in the third state of the im-plementation automaton. The knowledge from the previous state is K =

{v.isClosed} and the new information from the postondition is v.isOpen.The knowledge update step generates the �nal knowledge K = {v.isOpen}by removing v.isClosed beause v.isClosed∧v.isOpen∧¬(isOpen∧isClosed)is not satis�able.
BEGIN

...

v.open();

WAIT 1000;

v.close();

...

END Listing 6.5: Example ode for knowledge update with invariants.



96 CHAPTER 6. VERIFICATION APPROACH6.3.3 AlgorithmFigure 6.12 gives the full pseudo ode of the state mapping algorithm, in-luding knowledge update operations. The following adaptations need to bemade to the state mapping algorithm:� The mapping is hanged to map sets of situations to implementationstates. A situation is a tuple Situation = 〈(t1, . . . , tn), K〉. The newmapping therefore is M : SIA → P(Situation). New situations areadded to the mapping as they our (lines 14 and 25).� A new element K representing the set of propositions on subompo-nents valid in the implementation automaton is added to the searhposition. Therefore, it is now de�ned as SP = 〈s, (t1, . . . , tn), K〉.� Unsatis�ability of ontrol �ow onditions need to be heked (line 9).� New information from ontrol �ow onditions needs to be added to theknowledge (line 10).� Knowledge needs to be retrated, if spei�ed in the protool automata(line 8).� Knowledge from WAIT statements needs to be retrated as soon as itis not valid any more (line 21). This is the ase, as soon as the nextnon-atomi routine is alled after the WAIT statement.� New information from the protool automata needs to be added to theknowledge (line 19).� Constraints need to be heked whenever a new mapping is generated(line 22). This is the subjet of the next setion.6.4 Constraint ChekingConstraints are heked in the state propagation algorithm in every situationenountered (line 22). A onstraint is satis�ed, i� the urrent knowledgeontradits the negated onstraints, i.e., if there is no possibility that theurrent knowledge and an invalid state (as desribed by onstraints) oinide.
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Input: implementation automaton, subomponent protool automataResult: annotated implementation automaton, list of violations
push(sinit, (tinit

1 , ..., tinit
n ),

⋃
i Initial(PAi))1 while searh positions on searh stak do2

〈s, (t1, . . . , tn), K〉 := pop()3 foreah a suh that ∃s′ : (s, a, s′) ∈ TIA do4 if a 6= τ ∧ ¬∃i : (ti, τ
∗a, t′) ∈ TPAi

then violation deteted5 foreah s′ suh that (s, a, s′) ∈ TIA do6 let PAi suh that ∃t′ : (ti, τ
∗a, t′) ∈ TPAi

7
K ′ := K�Retract(ti)8 if ¬sat(K ′ ∧ CFC(s′)) then ontinue with line 69
K ′ := K ′ ⋄ CFC (s)10 if a = τ then11 if mapping is new then12

push(s′, (t1, . . . , tn), K
′)13

M(s′) :=M(s′) ∪ {((t1, . . . , tn), K ′)}14 end15 ontinue with line 616 end17 foreah t′i suh that (ti, τ
∗a, t′i) ∈ TPAi

do18
K ′′ := K ′ ⋄ Post(ti)19 if sat(K ′′ ∧ Inv ∧ ¬Pre(t′i)) then violation deteted20
K ′′ := K ′′�invalid WAIT knowledge21 if sat(K ′′ ∧ Inv ∧ ¬Constr) then violation deteted22 if mapping is new then23

push(s′, (t1, . . . , t
′
i, . . . , tn), K ′′)24

M(s′) :=M(s′) ∪ {((t1, . . . , t
′
i, . . . , tn), K ′′)}25 end26 end27 end28 end29 end30 Figure 6.12: DFS veri�ation algorithm with knowledge update.
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CONSTRAINT (ICooler cooler, IDriller driller)

[NOT (driller.isStarted() AND NOT cooler.isCooling())]Listing 6.6: Driller/Cooler onstraint.1 ( define oo l e r_ i sCoo l ing : : bool )2 ( define d r i l l e r_ i s S t a r t e d : : bool )3 ( define  on s t r a i n t : : bool (not (and d r i l l e r_ i s S t a r t e d (not←֓oo l e r_ i sCoo l ing ) ) ) )4 ( assert oo l e r_ i sCoo l ing )5 ( assert d r i l l e r_ i s S t a r t e d )6 ( assert (not  on s t r a i n t ) )7 (hek ) Listing 6.7: Yies input for heking a onstraint.De�nition 6.7 More formally, a onstraint is violated, i�
sat((¬Constr) ∧ invariants ∧ knowledge)In order to solve this SAT problem, again the SMT solver Yies [DdM06℄is used. The satis�ability problem is translated into the input language ofthe SMT solver, whih in turn returns either satis�able or unsatis�able.Assume we have to hek the onstraint in Listing 6.6. The situationalknowledge is cooler.isCooling()∧driller.isStarted() and there are no invari-ants. The SAT problem for heking the onstraint reads as follows:

sat(¬¬(driller.isStarted() ∧¬cooler.isCooling()) ∧ cooler.isCooling() ∧

driller.isStarted())The input for Yies for this satis�ability problem is listed in Listing 6.7.Lines 1 and 2 delare the two boolean symbols used in the onstraint andthe knowledge. Line 3 de�nes the onstraint and lines 4 and 5 assert theknowledge. Line 6 asserts that the onstraint is violated, whih needs to beunsatis�able. The last line exeutes the hek ommand whih heks theprevious ommands for satis�ability and either returns sat or unsat.The given SMT problem is unsatis�able, sine ¬cooler.isCooling() and
cooler.isCooling() an not hold simultaneously. Hene, the hek ommandreturns unsat and the onstraint is not violated. If the SMT solver reportedsatis�ability of the problem, we would have found an instane of onstraintviolation.



6.5. REACHABILITY ANALYSIS 996.5 Reahability AnalysisReahability analysis aims at �nding ode whih is unreahable and thus iseither super�uous or �awed. Unreahable ode is also often alled dead ode.It seems natural to extend stati analysis to �nd suh ode, sine the statemapping algorithm already does most of the stati analysis needed. Whatremains to do for a reahability analysis is to analyze the results of the statemapping algorithm.The analysis is done by heking the states in the annotated implemen-tation automaton having a ontrol �ow ondition (from IF or WHILE state-ments). Eah suh state must have at least one situation in whih the ontrol�ow ondition is established, in order to be exeutable. If there is no situationin whih the ondition holds, an unreahable state has been found.1 BEGIN2 cooler.start()3 driller.start();4 WAIT driller.rpmReached();56 IF NOT cooler.isStarted() THEN7 BEGIN // unreachable code block8 cooler.start();9 END1011 driller.down();12 driller.up();13 ...14 END Listing 6.8: Unreahable ode.Listing 6.8 shows a Monao ode blok ontaining unreahable ode.The unreahable ode is the blok starting at line 7. It is aused by thepreeding IF statement whih has a ondition that will never be true dueto the postondition knowledge gathered by the all to cooler.start()in line 2. The result of the veri�ation and reahability analysis is shown inFigure 6.13.
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Figure 6.13: Unreahable ode due to unsatis�able IF ondition.



6.6. CHECKING COMPONENT CONTRACTS 1016.6 Cheking Component ContratsReall from Setion 3.2.3 that the omponent struture forms a strit hier-arhy. The veri�ation for one omponent relies on the ontrats of its sub-omponents and assumes that its routines are alled as required by its ownontrat. This kind of reasoning is referred to as assume-guarantee reason-ing [HMP01℄. To be sound, the omponent implementation has to guaranteethat it ful�lls the postonditions spei�ed in its ontrat. This will be outlinedin the following.6.6.1 Cheking Component PostonditionsAs desribed above, a omponent has to guarantee, that it ful�lls the post-onditions spei�ed in its ontrat. We an hek this by adding the post-onditions of the ontrat of a omponent to the implementation automaton,when the omponent routines are inlined (see Setion 5.3).The only problem is, that the postonditions of the omponent are statedin terms of funtion symbols of the omponent itself, while the onditionsused in the knowledge update proedures are stated in terms of the funtionsymbols of the subomponents. This an be solved by analyzing the odeof the funtions used in these postonditions. These funtions essentially re-turn aggregated states of their subomponents. Thus, they onsist of a single
RETURN statement with a ondition omposed of subomponent funtionsymbols. This exat ondition is then used within the new postondition.Figure 6.14 gives an overview of the proess: the postondition x of theroutine all a (left) is added to the implementation automaton of the routine
a(). Sine the symbol x is a funtion of the omponent and not of one of itssubomponents, the ontents of the funtion x are used. Let's assume the odeof the funtion x is RETURN s1.y() OR s3.z(). The postondition isthen s1.y∨s3.z and added to the last state of the implementation automaton(right).In the state mapping algorithm the atual hek for ompliane with thepostonditions of the omponent's ontrat has to be done after line 19 (seealgorithm in Figure 6.15). The hek veri�es that the knowledge (K ′′) impliesthe parent postondition. If this hek fails, the omponent does not ful�ll
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a!
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Post : x()Protool AutomatonIComponent
s1.r1! s1.r1?

s3.r3!
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s3.r3?ImplementationAutomaton for a()Post : s1.y() ∨ s3.z()Figure 6.14: Postonditions of the omponent's ontrat are transferredto their implementation automaton. The postondition is thereby stated interms of subomponent funtion symbols.its ontrat.foreah t′i suh that (ti, τ

∗a, t′i) ∈ TPAi
do20

K ′′ := K ′ ⋄ Post(ti)21 if sat(K ′′ ∧ Inv ∧ ¬Post(s′)) then violation deteted22 if sat(K ′′ ∧ Inv ∧ ¬Pre(t′i)) then violation deteted23
K ′′ := K ′′�invalid WAIT knowledge24 if sat(K ′′ ∧ Inv ∧ ¬Constr) then violation deteted25 if mapping is new then26

push(s′, (t1, . . . , t
′
i, . . . , tn), K ′′)27

M(s′) =M(s′) ∪ {((t1, . . . , t
′
i, . . . , tn), K ′′)}28 end29 end30 Figure 6.15: Part of the DFS veri�ation algorithm. Line 22 heks whetherthe postondition of the omponent's ontrat is ful�lled.

6.6.2 Cheking Unhanged State PropertiesThe hek desribed in Setion 6.6.1 above guarantees that postonditionsare ful�lled. In addition to postonditions, there is a seond assumption thatwe use when updating knowledge in the state mapping algorithm: knowledgegained from postonditions remains true, until it is invalidated (by anotherpostondition, or by knowledge retration).



6.6. CHECKING COMPONENT CONTRACTS 103We an verify this assumption by heking that the knowledge at om-ponent routine alls only hange state properties of the omponent, if thesehanges are spei�ed in the routine's postondition.
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Chapter 7Semanti Assistane
”Syntax is what you see,

semantics is what you

have to find out.”- AnonymousThis hapter introdues tehniques to assist end users in programming.These tehniques exploit the veri�ation approah as presented in Chapter 6.Setion 7.1 presents an algorithm for searhing for proposals that suggest howa Monao program an be legally extended or modi�ed at a spei� loa-tion. Setion 7.1.2 shows how these proposals an be used to build interativeend-user support tools. The same algorithm forms the basis for the seman-ti program repair approah (Setion 7.2), whih �xes omponents that areinvalid with respet to their ontrats. The last setion of this hapter (Se-tion 7.3) presents a program visualization tool that an show and animatethe state of omponents during programming.The term Semanti Assistane is derived from the Elipse term ontentassist, a faility that provides programmers with proposals about what wordsthe user ould type in the urrent ontext (f. Setion 2.1). Our approah isto use syntati information plus semanti knowledge (ontrats) to give or-ret proposals (with respet to the ontrats) instead of only taking syntatiinformation into onsideration. As introdued in Setion 6.1, Semanti As-sistane tools are based on information gathered from heking omponentsagainst ontrats and onstraints of their subomponents. That means that105



106 CHAPTER 7. SEMANTIC ASSISTANCEit relies on the state mapping and knowledge dedution proess as presentedin Chapter 6. The resulting annotated implementation automaton is used bythe tools presented in this hapter to give proposals to the end user, whihare not only syntatially orret, but also semantially valid with respet tothe semantis given by protool ontrats and onstraints.7.1 Searh for ProposalsThis setion introdues a searh proedure for �nding valid routine alls fora ertain position in the soure ode. The proedure �nds those states of theimplementation automaton that orrespond to the given position in the ode.These states are then used to �nd a set of valid routine alls with whih theall sequene up to this point an be ontinued.De�nition 7.1 Let's assume, that the state s is the implementation stateorresponding to a spei� loation in the soure ode, where we want toompute whih routine alls are allowed to our next. We de�ne the set ofvalid routine alls as:
V C = {r | ∃i∀〈(sPA1 , . . . , sPAn

), K〉 ∈ M(s) : ∃s′ : (sPAi
, τ ∗(r, call), s′) ∈

TPAi
∧ ¬sat(((K�Retract(sPAi

)) ⋄ Post(s′)) ∧ Inv ∧ ¬Constr)

∧ ¬sat(((K�Retract(sPAi
)) ⋄ Post(s′)) ∧ Inv ∧ ¬Pre(s′))}.This means, that all routines are valid routines, where1. a protool ontrat PAi allows us to all the routine in any situation

〈(sPA1, . . . , sPAn
), K〉 assoiated with the given implementation state

s:
∃i∀〈(sPA1 , . . . , sPAn

), K〉 ∈ M(s) : ∃s′ : (sPAi
, τ ∗(r, call), s′) ∈ TPAi(for an example see Setion 7.1.1)2. the all does not violate any onstraints ¬sat(K ′ ∧ Inv ∧ ¬Constr)where K ′ is the updated knowledge ((K ′�Retract(sPAi

)) ⋄ Post(s′))3. the all does not violate a preondition ¬sat(K ′ ∧ Inv ∧ ¬Pre(s′)).In essene, it an be regarded as simulating one step in the state mappingalgorithm starting at the mapping of the implementation state s. Note, that



7.1. SEARCH FOR PROPOSALS 107it does not onsider further steps, suh that it does not reognize errors whihappear subsequently as a result of a proposed routine all.If more than one state orresponds to the ode position for whih the setof valid routine alls is to be alulated, the intersetion of the valid routinealls of the respetive states is the result. We need to use the intersetion,beause valid routine alls should be valid in any possible exeution pathleading to the ode position.
7.1.1 ExamplesIn the following, examples will illustrate the searh for proposals in varioussituations.Valid Routine Calls at a Single StateFigure 7.1 shows an example of the appliation of the searh for valid routinealls after the ode in Listing 7.1. In this example, we want to �nd out, howwe an proeed at the state s in the implementation automaton (enter). Theprotool automata of the subomponents cooler and driller are depited tothe left and the right, respetively. The dotted lines show the state mappingrelations between the states of the implementation automaton and the statesof the subomponent protool automata.Valid routine alls at the implementation automaton state s are the rou-tine symbols at all-transitions leaving the protool automata states mappedto s. In our example, the routines c.stop and d.start would be valid. Thesetransitions are marked bold in Figure 7.1.
BEGIN

c.start();

<>

END Listing 7.1: Example ode for valid routine alls.
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start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

s

c.start!

c.start?

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

Figure 7.1: Finding valid routine alls.
BEGIN
c.start();
d.start();
IF f.pieceAtDriller() THEN BEGIN

WAIT d.rpmReached();
d.down();

END
<>

END Listing 7.2: Example ode for valid routine alls.Valid Routine Calls with Multiple SituationsWhen multiple di�erent situations an be found for a ertain position inthe ode, we have to use the intersetion of the valid routine alls at eahsituation. Listing 7.2 shows a ode sample where di�erent situations our atthe ursor position. In this example, three subomponents exist: a ooler anda driller subomponent as in the previous example, and a feeding omponenttransporting workpiees to the driller.The orresponding implementation automaton is shown in Figure 7.2(top). It shows the state mapping result at state s in the implementationautomaton (dotted lines). Due to the two branhes of the IF statement, twodi�erent situations emerge:� Situation 1 with knowledge
K = {c.isStarted, d.isStarted,¬f.pieceAtDriller}� Situation 2 with knowledge
K = {c.isStarted, d.isStarted, d.isDrilling}
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CF C :

¬f.pieceAtDriller()
CF C : f.pieceAtDriller()

CF C : d.rpmReached()

s

τ

τ

d.down!

d.down?

τ

τ

τ

start! start?

stop!stop?

Post : isCooling()

Init :

¬isCooling()

Post : ¬isCooling()

Post : isDrilling()

Pre : rpmReached()

Post : ¬isDrilling()

Post : isStarted() Post : ¬isStarted()

start! start? stop! stop?

down?up!

down!up?

Figure 7.2: Finding valid routine alls.The two situations do not only di�er in the assoiated knowledge, butalso in the mapped states of the driller protool automaton (bottom right).The �rst situation (in whih the IF branh was not taken) is mapped tothe state diretly after the return of the routine start. The seond situationis mapped to the state between the return of routine down and the all ofroutine up.Valid routine alls for this example per situation would then be:� Situation 1: d.stop, d.down� Situation 2: d.upSine the intersetion of these sets of valid routine alls is empty, noroutines an be proposed at this position. Yet, guarded proposals an bemade, whih hek for the ative situation by proposing an IF statementbefore eah of the routines. Guarded proposals in this example are as follows:



110 CHAPTER 7. SEMANTIC ASSISTANCE� Situation 1:
IF NOT f.pieceAtDriller() THEN d.stop();

IF NOT f.pieceAtDriller() THEN d.down();� Situation 2:
IF d.isDrilling() THEN d.up();Note, that the onditions of the guarded proposals are just the tests forthe di�erent situations. Guarded proposals are not yet implemented in theprototype implementation of Semanti Assistane.7.1.2 Interative AssistaneThe funtionality desribed above an be used to enhane existing ode pro-posal failities. In the following, three interative tools for semanti end-userassistane are presented. All tools propose valid routine alls at a seletedode position.Semanti Assist PopupFigure 7.3 shows the proposal popup of the Semanti Assistane implementa-tion. While the popup presents all syntatially valid routines and funtionsof the subomponent driller, it highlights those routines whih do not violateontrats or onstraints.

driller.down() and driller.stop() are valid alls at the ursor position,while driller.start() and driller.up() are invalid and therefore rossed out.Still, also the invalid alls are shown in the popup menu and an even beseleted and inserted. This is beause a program must be allowed to violateits ontrats temporarily during editing. After editing, the program is hekedagain before it is downloaded to the mahine. By rossing out the invalid allswe at least indiate to the end user that a all to these routines is invalidhere. Note that alls to funtions are always possible.
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Figure 7.3: Semanti Assistane popup window showing valid routines andsemantially invalid routines (rossed out).Drag-and-drop AssistaneThe Monao visual editor allows a user to insert routine alls by drag anddrop. For every omponent in the program there is a sidebar menu listing allpossible routine alls to this omponent. The user an selet a all from thismenu and drag it into the ode. While he moves the mouse ursor over state-ments the positions where the seleted all an be dropped are highlighted.Valid positions are highlighted by a green plus sign (Figure 7.4(a)), whileinvalid positions are marked by a red ross (Figure 7.4(b)). The state infor-mation obtained from ontrats and onstraints is used to �nd the positionswhere a all an be dropped legally. Note, that it is again possible to dropa all also at an illegal position, thus violating the ontrats of the programtemporarily.Outline HighlightingThe Elipse outline view shows all routines valid at the seleted ode posi-tion. We have ustomized the outline view to show all routines that an bealled at the seleted ode position aording to the ontrats. Figure 7.5shows a sreen shot of the outline view and the visual editor with a seletedode position. The ode position seleted is between two statements (high-lighted by a blak retangle), and aording to the ontrats, only one routine
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(a) Call allowed. (b) Call disallowed.Figure 7.4: Drag-and-drop assistane in the visual editor. Figure (a) showsthat it is possible to insert the all vSolvent.Open() at the seleted loationwhile (b) shows that it is not possible to insert it at another loation.

Figure 7.5: Semanti Assistane showing valid routines in the outline view.(driller.up) is valid there. All other routines are rossed out.7.2 Program RepairSemanti errors annot be fully eliminated by the tools presented above.A user might need to make temporary hanges to a program, turning theprogram invalid. These semanti errors are indiated in the textual editor byred underline and an error marker at the left margin. Similarly, these errors
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(a) Semanti error in text editor. (b) Semanti error in visual edi-tor
() Semanti error in the Monao problems viewFigure 7.6: Semanti error in the Monao text editor and the Monaovisual editor. The error shown here is due to a onstraint violation. Detailson the error are presented in the Monao problems view.are also shown in the visual editor, where a light bulb marks an error whihan be resolved by the proedures presented in this hapter. Additionally,semanti errors are shown in the Elipse problems view.Program repair is about hanging a program ontaining a semanti errorsuh that the hange removes the ontrat violations. Figure 7.6 shows thedi�erent visualizations for semanti errors. Figure 7.12 in Setion 7.2.3 showsthe resulting repair proposals and the repaired program.The goal of program repair is to reover from semanti errors by o�ering alist of program hange proposals from whih the developer an hoose. Thoseproposals are based on the semantially invalid program and the ontrats.Seleting any of the proposals will make the resulting program semantiallyvalid. If a program ontains more than one semanti error, the program repairalgorithm might need to be applied multiple times.



114 CHAPTER 7. SEMANTIC ASSISTANCE7.2.1 GoalsThe goals of the program repair algorithm are to provide program hangeproposals that:1. do not introdue new errors,2. remove existing semanti errors,3. make as few hanges as possible,4. are as lose as possible to the error loation.Goals 1 and 2 are neessary goals, while goal 3 an be quanti�ed in termsof number of hanges and an assoiated weight per hange operation. Theweight of one program hange proposal is the sum of the weighted hangeoperations and an be used to rank di�erent program hange proposals and�nd those that make minimal hanges while still ful�lling goals 1 and 2(lower weight ranked higher). Goal 4 aims for loal hanges that an enduser programmer an omprehend by looking at the ode where the errorourred, without having to searh through several routines.7.2.2 Repair StrategiesThe repair strategies of the program repair algorithm di�er based on thetype of semanti error. The types of semanti errors that we an �nd are asfollows:1. Invalid all sequene: the sequene of routine alls in the program vio-lates the sequenes allowed by the protool automaton of a subompo-nent.2. Condition violated(a) Preondition violated: a subomponent routine is alled withouthaving the preondition of this all established.(b) Constraint violated: a all to a subomponent generates knowledgethat violates one or more onstraints.



7.2. PROGRAM REPAIR 115() Parent postondition violated: at the end of a routine, the poston-dition of the routine in the omponent's ontrat is not ful�lled.Error type 1 (invalid all sequene)The semanti errors of type 1 boil down to an invalid routine all due toa missing transition in the protool automaton. These errors an be �xedby hanging the transitions in the implementation automaton. The followingrepair strategies an therefore be hosen:� Insert a routine all whih is valid in the ontrats (weight: 2)� Remove a routine all (weight: 3)� Move a routine all to some other position (total weight: 1)Error type 2 (ondition violated)Semanti errors of type 2 an only be �xed by reating new knowledge, suhthat the ondition urrently violated is ful�lled when the repair proposalsare applied. A repair proposal therefore an onsist of the following repairstrategies:� Insert alls establishing the neessary ondition (weight: 2).� Remove a routine all (weight: 3).� Insert a WAIT statement, if the ode position is within a parallel ontextor the violated ondition is a preondition whih an not be establishedby a postondition of a routine (weight: 1.4).� Insert an IF statement, if there is at least one situation in whih theviolated ondition is satis�able (weight: 3).Remark: If there was no situation in whih the ondition anbe satis�ed, there is no use in adding an IF statement, sine itwould only make the error loation unreahable.



116 CHAPTER 7. SEMANTIC ASSISTANCE1 BEGIN2 c.start();3 d.start();4 WAIT d.rpmReached();5 d.down();6 d.up();7 c.stop();8 d.stop();9 ENDFigure 7.7: Monao ode with semanti error due to onstraint violation.The weights have been hosen suh that the goals stated above are met asgood as possible. We assume, that ertain mistakes are more ommon thanothers, therefore the repair proposals for these mistakes have a lower weight.Severe hanges, like removing a routine all have the highest weight (3), sinewe an assume that an end user would not add an unneessary routine all,but rather add it at an inappropriate loation. Thus, moving a routine allhas the least weight (1). Adding a routine all (without removing the sameall at another loation) has an intermediate weight (2).7.2.3 AlgorithmThe program repair algorithm uses bounded depth �rst searh to �nd hangeproposals. In every step of the depth �rst searh, all repair strategies (insertall, remove all, ...) are onsulted to repair the program. As soon as a se-quene of hange ations has been found, that loally repairs the program,this set of hanges is added as a new proposal to the result. A searh pathis no longer followed, if the depth has reahed a ertain limit, or the totalweight of the hanges has exeeded a maximum weight.In order to illustrate the algorithm, we will demonstrate it by means ofan example. The ode with the semanti error an be found in Listing 7.7.Assume, we have a onstraint de�ning that the ooler must not be stoppedwhile the driller is started. The semanti error then is in line 7, where theooler is stopped, before the driller.Figure 7.8 shows the part of the implementation automaton ontainingthe semanti error. The algorithm starts to searh for program repair propos-
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1 2 3 4 5 6 7 8 9

d.down! d.down? d.up! d.up? c.stop! c.stop? d.stop! d.stop?Figure 7.8: Program repair example.als at the state diretly before the statement where the violation was deteted.In our example, this is state 5, diretly before the transition c.stop!.A fragment of the searh tree is shown in Figure 7.9. For larity, the inser-tion of WAIT or IF statements has been omitted as possible repair ations inFigure 7.9, beause they do not lead to valid repairs in this partiular exam-ple. Dashed edges indiate ontinuation of the searh, while hek marks labelnodes with valid repair proposals. The latter nodes also ontain a numberdenoting the total weight of the proposal.We will take a look at one of the searh paths, spei�ally, at the searhpath having the minimal total weight. This path is highlighted in Figure 7.9.The searh proedure starts at the root of the searh graph and reasons abouthanges to the implementation automaton. The �rst strategy onsulted, isthe strategy for adding routine alls. This strategy looks at the states mappedto the urrent state in the implementation automaton (state 5) and looks forlegal ontinuation routine alls. In state 5, alls to the routines d.down and
d.stop are valid aording to the ontrats. No alls to the subomponentooler are valid at this position, though.The searh proedure adds new branhes (�rst d.down, then d.stop) tothe searh tree. We ontinue at the highlighted path in the searh tree: now,the edge d.stop is followed, we add new virtual states onneted by the tran-sitions d.stop! and d.stop? to the implementation automaton. All the know-ledge update and heking steps as onduted in the state mapping algorithmare performed, suh that a virtual state mapping for the new states exists.Figure 7.10 shows the new virtual states.The new terminal virtual state V2 is used as the starting point for thenext level in the searh algorithm. Again, all repair strategies are onsulted.We ontinue with the strategy following the highlighted path in Figure 7.9.This strategy is alled onsume and does not add any new virtual nodesto the implementation automaton, but marks the routine all following theinsertion point of the virtual branh in the automaton as onsumed. Doing so
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insert
d.down insert d.up ...remove .stop ...d.stop insert ...remove .stop remove 4d.stop ...onsume .stop insert .start ...remove 1d.stop ...

remove 3.stop insert d.down insert 7d.up ...remove 8d.stop ...d.stop ...remove 6d.stop ...onsme 3d.stop ...Figure 7.9: Program repair algorithm searh tree.
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d.up! d.up? c.stop! c.stop? d.stop! d.stop?

d.
st
op

!

d.stop?

Figure 7.10: Program repair example with virtual states after one step.is only possible if this all does not lead to any ontrat violations in the newvirtual mapping. In the example, the all c.stop is onsumed and a virtual



7.2. PROGRAM REPAIR 119Repair Proposal Total Weightinsert d.stop, remove c.stop, remove d.stop 4insert d.stop, skip c.stop, remove d.stop 1remove c.stop 3remove c.stop, insert d.down, insert d.up 7remove c.stop, insert d.down, remove d.stop 7remove c.stop, remove d.stop 6remove c.stop, skip d.stop 3Figure 7.11: Repair proposals and their weight, ordered by appearane inthe searh tree.state mapping and knowledge update is established for the onsumed nodes.Next, again all repair strategies are onsulted. After the insertion strat-egy was exeuted, the remove strategy removes the routine all d.stop. Theresulting set of hanges (insert d.stop before c.stop and remove the existing
d.stop after c.stop) is a valid repair proposal. The question remains, how thealgorithm detets whether a ertain path in the searh tree is a valid repairproposal.Reognizing Valid Repair ProposalsAfter eah appliation of a repair strategy, the algorithm heks whetherthe resulting virtual state mapping an be ontinued with the rest of theimplementation automaton. Sine a full state mapping appliation in everynode of the searh tree would take too long, only a �xed number of statemapping steps are performed. If no violations are found within these steps,the path leading to this node in the searh tree is assumed to be a validrepair proposal.Prioritizing Repair ProposalsIn the example presented, several valid repair proposals have been identi�ed.In order to present only the most adequate proposals to the programmer,these proposals need to be sorted. We use the total weight of a proposalbased on the sum of the individual weights of the repair strategies.
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(a) Program repair proposals wizard showing pro-posals for the example. (b) Result of program repair.Figure 7.12: Program repair wizard proposing repair ations with minimalimpat.Remark: Although a move strategy has been introdued it isnot an expliit strategy, rather a onsequene of an insert and asubsequent remove strategy (or vie versa) of the same routinesymbol.The highlighted path in the example has a total weight of 1, sine thetwo strategies, insert and remove, an be merged to a logial move strategyhaving the weight 1. Thus, this repair proposal has the minimal weight andwill be ranked higher than other repair proposals. Figure 7.11 shows all repairproposals of the searh tree with their respetive total weights.These ordered repair proposals are then used in a wizard as shown inFigure 7.12(a). The end user an then selet the adequate repair proposaland the tool automatially applies the hanges (Figure 7.12(b)).These repair proposals are assumed to be valid repair proposals, as statedabove. Nevertheless, this assumption might be wrong, if the program repairproposal introdues errors whih emerge later in the program. In order toonly propose repair proposals that are guaranteed to repair the program, weould apply the hange proposals of the best repair proposals to a opy ofthe defetive program and then have the program heked. However, this



7.2. PROGRAM REPAIR 121hek may again give false positives in ase the program had multiple viola-tions. Program repair only repairs the �rst violation within a program, sinelater violations might be onseutive faults. A repair proposal whih orretsthe �rst violation does not neessarily make the whole program orret, buteliminates this �rst violation.Error Loation Before Error DetetionIn the example shown above, it was simple to �nd a repair proposal, beausethe loation where the ontrat violation was deteted was the exat loationwhere a (short) repair proposal ould be found. Nevertheless, there mightbe situations where an error an be �xed by hanging the program severalstatements before the error loation. The algorithm is therefore also exeutedat states prior to the error loation, thus reating additional searh trees.To aount for the goal of having hanges as lose as possible to theerror loation, repair proposals resulting from suh an additional searh treefarther from the loation of error detetion have an additional weight.Program Repair Example with WAIT StatementListing 7.13 shows a routine of a program onsisting of a ooler and a drilleromponent, whih are used in parallel. The parallel threads are oordinatedby a WAIT statement whih waits for the ooler to be started, before thedriller is started. Note, that the seond parallel blok starts in line 8. However,the ooler is stopped only after a ertain timeout (line 11). Sine we annotbe sure that the driller is stopped before the ooler, a onstraint is violated.The program repair algorithm �nds that the error loation is within aparallel blok, thus it allows using the program repair strategy whih inserts
WAIT statements. The repair proposals found are:� insert WAIT NOT driller.isStarted() before cooler.stop� delete all cooler.stop



122 CHAPTER 7. SEMANTIC ASSISTANCE1 PARALLEL2 WAIT cooler.isCooling();3 driller.start();4 driller.down();5 driller.up();6 driller.stop();7 ||8 WAIT nextItem();9 cooler.start();10 MSG "drilling hole into item";11 WAIT TIMEOUT(3000);12 cooler.stop();13 ENDFigure 7.13: Monao ode with semanti error. The ooler might bestopped, before the driller.7.3 Program State VisualizationProgram state visualization aims at helping program understanding for endusers who have to maintain or adapt existing programs. Currently, end usersonly have two possibilities to get an understanding of an existing program:� read the soure ode and try to understand it, and� run the program to �nd out what the results are.These possibilities are not adequate for end users. On one hand, endusers do not have the software engineering expertise to be able to understandomplex programs in detail. On the other hand, in the automation domainit an be fatal to run a program without knowing the results beforehand.7.3.1 OverviewTo takle these issues, a program visualization tool has been reated, whihallows a design-time visualization of Monao programs [Str09℄. It visualizesthe mahine states orresponding to the di�erent positions in a Monaoprogram without exeuting the program.



7.3. PROGRAM STATE VISUALIZATION 123Situation 1
• .isCooling
• ¬d.isDrilling
• d.isStarted Situation 1

Monao IDE State Dedution VisualizationFigure 7.14: Program visualization overview.The program visualization tool uses situational knowledge reated bythe state mapping algorithm. The overall proess works as follows (see Fig-ure 7.14):1. The user selets a position in the visual editor of the Monao IDEwithout exeuting the program.2. The states in the implementation automaton orresponding to the se-leted statement are searhed.3. The situational knowledge at these states are summed up and forwardedto the visualization tool.4. The visualization tool uses the situational knowledge to visualize themahine state.7.3.2 Knowledge DedutionThe knowledge dedution system generates situational knowledge preparedfor the visualization tool. The visualization tool gives a list of questions tothe knowledge dedution system whih in turn omputes the answers. Thequestions are funtion symbols for whih the tool needs the value in orderto visualize the omponent state. The answer to eah question an either beTRUE, FALSE, or UNKNOWN, depending on whether the knowledge in a



124 CHAPTER 7. SEMANTIC ASSISTANCEFuntion Symbol Value
c.isCooling TRUE

d.isDrilling FALSE

d.isStarted TRUE

d.rpmReached UNKNOWNFigure 7.15: Results of the state dedution proess.ertain situation implies the question (TRUE ), implies the negation of thequestion (FALSE ) or neither of them (UNKNOWN ).Assume that we have a ooler and a driller omponent as shown in Fig-ure 7.14. The user liks the spae after the statement driller.down()to see the state of the mahine after this statement has been exeuted. Thesystem �nds a single state in the implementation automaton with one situ-ation attahed. The knowledge in this single situation is K ={c.isCooling,

d.isStarted, ¬d.isDrilling}.The visualization asks for the values of all funtion symbols (in the ex-ample c.isCooling, d.isStarted, d.isDrilling, and d.rpmReached). From theknowledge above and the invariants of the system, the values shown in Fig-ure 7.15 are dedued using an SMT solver. For eah question, the SMT solverneeds to verify whether sat(K∧Inv∧question) or sat(K∧Inv∧¬question).If both satis�ability heks are true, or both heks are false, the value
UNKNOWN is used. If the loation seleted by the end user orrespondsto several states in the implementation automaton, and/or multiple situa-tions exist, the proess desribed above is exeuted for eah situation. Thevisualization tool is then provided with the answers for eah situation.7.3.3 VisualizationThe state visualization tool is a plugin to the Monao IDE and displaysa shemati view of a set of Monao omponents. Based on the valuesgenerated from the state dedution (see previous setion), the visualizationdisplays parts of omponents in di�erent olors, size, position, rotation, andvisibility and an even run animations. The visualization allows users toswith between multiple situations, so that the end user an see in whihstates the system ould be, when the seleted loation in the ode is reahed.



7.3. PROGRAM STATE VISUALIZATION 125The visualizations of the omponents, the binding of properties of the om-ponents on values of funtion symbols, as well as the animations need to bereated in advane by an expert designing the Monao omponent.Figure 7.16 shows the visualization of a hydrauli solvent an omponentonsisting of a set of valves and a solvent ontainer (from the EoChargePDase study, see Chapter 8). The visualization shows a piture of the urrentsitutation for the seleted position in the Monao routine. It shows ananimation of the solvent �ow (arrows in the pipe), the hange of the state ofa valve (spinning valve symbol), the ontainer �lling up with solvent and open(green) and losed (red) valves as well as valves whose states are unknown(gray).Note, that for the seleted ode position, the state dedution algorithmhas found two di�erent situations (situation 1 is shown urrently). The useran swith between the two situations with the arrow buttons in the upperleft orner to see the visualization of the state of the omponents in anothersituation. Additionally, all funtion symbols and the values reported by thestate dedution proess are shown for the seleted situation (top right).
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Figure 7.16: State visualization with �ow animation.



Chapter 8Case Studies and Evaluation
This hapter desribes ase studies in whih the presented work has beenvalidated. Furthermore, evaluation results about program state visualizationare presented.8.1 Keplast Injetion Molding MahineThe injetion molding mahine software investigated in this setion is a reim-plementation of an existing ontrol program of our industrial partner Keba.As the system has already been introdued in Setion 3.5 we will refer toSetion 3.5 for details on the Monao implementation.Reall, that the program is strutured into a hierarhy of omponents(see Figure 3.11). Eah omponent has an interfae whih de�nes how it anbe used by its upper omponent.8.1.1 ContratsWe have reated ontrats for all interfaes of the Keplast system. The on-trats desribe the intended usage of the omponents. We will take a lookat the interfaes IMoldCtrl and INozzleCtrl and their ontrats. Theinterfae de�nition of IMoldCtrl is shown in Figure 8.1.The ontrat for this interfae (see Figure 8.2) allows us to all the open127



128 CHAPTER 8. CASE STUDIES AND EVALUATION1 INTERFACE IMoldCtrl2 EVENTS error;3 FUNCTION isOpen() : BOOL;4 FUNCTION isClosed() : BOOL;5 FUNCTION clampPos() : REAL;6 ROUTINE open();7 ROUTINE close();8 ROUTINE stop();9 END IMoldCtrl Figure 8.1: Interfae IMoldCtrl.and close routines in turn. It also allows us to all the routine stop on themold, if the routines close or open are interrupted (by an error signal).The all of the routine open has a postondition that guarantees that afterthe all the proposition isOpen holds. Similarly, the routine all close hasthe postondition isClosed. In addition, the ontrat also has an invariant,stating that the mold an never be opened and losed at the same time (seeFigure 8.3). When an error has interrupted exeution of the routines closeor open, the knowledge about the state of the mold is lost (it might beopened, losed, or in an intermediate state). The knowledge about any ofthese states is therefore retrated (see Figure 8.2).
open! open?

close!close?

stop! stop?

τ

τ

Post : isOpen()

Post : isClosed()

Retract : isClosed, isOpenFigure 8.2: Protool automaton for the interfae IMoldCtrl.The seond ontrat we present for the Keplast ase study is the on-trat of the interfae INozzleCtrl (see Figure 8.4). The nozzle omponent
Invariant: NOT (isClosed() AND isOpen())Figure 8.3: Invariant of IMoldCtrl.



8.1. KEPLAST INJECTION MOLDING MACHINE 1291 INTERFACE INozzleCtrl2 ROUTINE startHeating();3 ROUTINE inject();4 ROUTINE plasticize();5 FUNCTION tempReached() : BOOL;6 FUNCTION isPlasticized() : BOOL;7 FUNCTION isInjected() : BOOL;8 END INozzleCtrl Figure 8.4: Interfae INozzleCtrl.ontrols the supply with plasti granulate for the injetion of melted plas-ti into a mold. Therefore it has the routines inject, plasticize, and
startHeating and the funtions tempReached, isPlasticized, and
isInjected. The ontrat of the nozzle spei�es, that �rst the nozzle needsto be heated before the injetion routine and the plasti�ation routine anbe exeuted in turn.The routine startHeating guarantees that after its exeution the melt-ing temperature of the material has been reahed. The routine inject needsthe nozzle to be �lled with plastiized material or to have the target temper-ature reahed and guarantees that after it is exeuted, the plasti material isinjeted. Similarly, the routine plastiize guarantees that after its exeutionthe funtion isPlasticized returns true.

startHeat! startHeat?

inject! inject?

plasticize!plasticize?

Post : tempReached

Pre : isP lasticized ∨ tempReached

Post : isInjected

Pre : isInjected
Post : isP lasticizedFigure 8.5: Protool automaton for the interfae INozzleCtrl.The ontrat for INozzleCtrl also has an invariant (see Figure 8.6).The invariant states, that the material in the nozzle annot be re�lled (plas-tiized) and injeted at the same time.
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Invariant: NOT (isPlasticized() AND isInjected())Figure 8.6: Invariant of INozzleCtrl.8.1.2 ConstraintsIn addition to the ontrats, we also identi�ed onstraints whih need to holdat any time during exeution of the system. Figure 8.7 shows a onstraintstating that the srew may only be in front, if the heating ontrol has reahedthe required temperature.
CONSTRAINT (IScrewCtrl screw, IHeatingCtrl heating)

[NOT (screw.isInFront() AND NOT heating.tempReached())]Figure 8.7: Constraint of IScrewCtrl and IHeatingCtrl.
8.1.3 End-User SupportIn this setion we will show the appliation of the di�erent semanti assistanetools in the Keplast ase study. All �gures will show the tools applied inthe routine Kundenfenster whih is the routine in whih end users aresupposed to make program hanges. First, we will show the semanti assistpopup in the Monao textual editor. Figure 8.8 shows the popup betweentwo parallel statements of the routine. The seleted omponent is mold (sine
mold. is already typed in the editor), and the proposed routine is open.Aording to the ontrat, no other routine may be alled at this position.Figure 8.9 shows the outline highlighting feature of the Monao IDE.The spot below the routine all nozzle.inject is seleted (see mouseursor) and the outline view shows routines whih may be alled at thisposition in the ode. The ion of routines that may not be alled at thisloation is rossed out.Figures 8.10 and 8.11 show the drag-and-drop assistane in the visualeditor of the Monao IDE. Figure 8.10 shows the user dragging the routineall mold.open from the outline view to a position where inserting the allis allowed. The immediate feedbak of the system is the green plus sign,
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Figure 8.8: Semanti assist popup in the routine Kundenfenster propos-ing routine open.

Figure 8.9: Outline highlighting in the routine Kundenfenster for theseleted position in the ode.
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Figure 8.10: Drag-and-drop assistane allowing to insert a routine all.

Figure 8.11: Drag-and-drop assistane denying to insert a routine all.showing that adding the routine all does not lead to a ontrat violation atthat loation in the ode.Figure 8.11, in ontrast, shows the user dragging the same routine all toa position where it is not allowed to insert the all. A red ross sign indiatesthat the routine all is not valid here.Figure 8.12 shows the semanti error resulting from inserting the rou-tine all mold.open at an invalid position. In this example the all now
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Figure 8.12: Semanti error: the routine mold.open is alled twie withinthe parallel statement.appears in two parallel branhes, whih is not allowed by the ontrat. Thesemanti error is highlighted by a red line and a light bulb. In the example,both instanes of mold.open are highlighted as errors, sine the veri�ationalgorithm annot dedue, whih of the alls is an atual error. Cliking thelight bulb opens the program repair assistant shown in Figure 8.13. Programrepair proposes to remove a all to mold.open.
8.2 Duerr Paint Supply SystemDuerr is a ustomer of our projet partner Keba and produes painting robotsfor the automotive industry. We implemented a ase study modeling the paintsupply system of a painting robot used in the automotive industry (produtname: EoCharge PD). The goal of the ase study was to show the applia-bility of Monao and its tools, inluding Semanti Assistane, to a systemomposed of dozens of omponents. We have reimplemented the reativeontrol part of the system and proved the appliability of Monao. In thissetion, we will desribe the system, the ontrats of its omponents, andthe onstraints we identi�ed. Finally, the appliation of the various SemantiAssistane tools is shown.
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(a) List of proposals. (b) Highest ranked proposal.Figure 8.13: Program repair proposing to delete one of the alls to
mold.open.8.2.1 Monao AppliationThe paint supply system onsists of six Monao omponents and over 60native subomponents. It regulates the paint supply and the purging of thepaint pipes. The native subomponents are mostly valves being opened andlosed to let paint, air and solvent �ow through pipes, and to �ll paint pis-tons. Some of the pipes ontain so-alled pigs (pipeline inspetion gauges)that �oat in the pipe and physially separate di�erent liquids or air beingtransported.Figure 8.14 shows the main omponents of the system. On the bottomleft, the olor hanger omponent allows the system to insert di�erent typesof paint, without mixing any two olors. Next, a pipe with a pig leads to oneof the subhannels. The paint supply system may onsist of multiple subhan-nels whih independently supply the atomizer omponent (top right) withthe exat olor needed. The implemented system has two subhannels. Whileone of the subhannels pushes paint to the atomizer, the other subhannelis reloaded with the appropriate paint for the next produt. The atomizer isthe spray nozzle that oats the produt with the paint. In addition, the sol-vent an omponent provides the system with solvent for purging the pipes
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Figure 8.14: Shema of the Duerr appliation.whenever a pipe needs to be loaded with another paint.8.2.2 ContratsWe have reated ontrats for all interfaes of the Duerr system. The interfae
IValve is used most often, therefore we will disuss this interfae and itsontrat. The interfae de�nition is shown in Figure 8.15. It onsists of thefuntion IsOpen returning the urrent state of the valve. In addition, twoatomi routines exist, whih an be used to open and lose the valve.The ontrat for this interfae is depited in Figure 8.16. The ontratallows opening and losing the valve in turn. Postonditions guarantee thatafter alling the routine open the proposition isOpen() holds. Similarly,alling the routine close guarantees that the valve is not opened.Another omponent in the Duerr appliation is the solvent an. The sol-



136 CHAPTER 8. CASE STUDIES AND EVALUATION1 INTERFACE IValve2 FUNCTION IsOpen() : BOOL;3 ATOMIC ROUTINE Open();4 ATOMIC ROUTINE Close();5 END IValve Figure 8.15: Interfae IValve.
Post : ¬isOpen()Post : isOpen()

open!

open? close!

close?

Figure 8.16: Protool automaton for the ontrat of IValve.1 INTERFACE ISolventCan2 FUNCTION FillLevel() : INT;3 ROUTINE Init();4 ROUTINE Refill();5 END ISolventCanFigure 8.17: Interfae ISolventCan.vent an stores solvent to purge pipes whih are used to diret di�erent liquids(paint in di�erent olors) in the paint supply system. The an is re�lled reg-ularly from a larger solvent tank, and the pipe between this solvent tank andthe solvent an needs to be �lled with air afterward in order to eletriallyinsulate the tank from the rest of the paint supply system. The interfae ofthe solvent an is ISolventCan and is shown in Figure 8.17. It ontains thefuntion FillLevel and two routines for the initialization (routine Init)of the valves and for re�lling the solvent an (routine Refill).The protool automaton for the ontrat of ISolventCan is shown inFigure 8.18. It requires to �rst all the Init routine to initialize the solventan. Afterwards, the routine Refill an be alled repeatedly. The ontratdoes not give any guarantees about the omponent state and does not usepreonditions.
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Init!

Init?

Refill! Refill?Figure 8.18: Protool automaton for the ontrat of ISolventCan.
8.2.3 ConstraintsWe have identi�ed many exlusion onditions that state that ertain valvesmay not be open simultaneously, and modeled these onditions as onstraints.In the following, we will take a look at the solvent an omponent.Figure 8.19 shows the solvent an with its valves and pipes in di�erentstates, while the solvent an is re�lled. The left part of the system is onnetedto the solvent tank by a valve that brings the solvent to the solvent an. Thesolvent an (on the right side) is onneted to the left part of the system bya pipe. Within the pipe a pig separates solvent from air, suh that solventan be pressed into the solvent an without getting air into the an.Figure 8.20 shows the exlusions on the valves, meaning that two valvesthat are onneted by a thik red line may never be open at the same time.The exlusions are quite obvious: an air input must never be opened togetherwith a solvent valve, suh that no air bubbles are in the solvent. Similarly,the solvent must not be pushed to the drain. The onstraints for these exlu-sions are given in Listing 8.1, for a omprehensive list of all onstraints seeAppendix B.In the original system, these onditions had to be heked at runtime (inevery yle of the exeution) and therefore had a great negative impat onruntime resoures. These onditions an now be veri�ed statially, even whenend users hange the program.
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(a) Initial state of the system. Allvalves are losed. (b) The solvent an is being �lled.

() The solvent an is getting full. (d) The remaining solvent in the pipeis pushed into the an using the pig.

(e) When the solvent an is �lled, the�lling valve is losed and the solventan be used to purge pipes.Figure 8.19: Struture and funtioning of the solvent an omponent in theDuerr ase study.
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Figure 8.20: Exlusion onditions between the valves of the solvent anomponent.
CONSTRAINT (IValve vPSCAir, IValve vPSCSolvent)
[NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vPSCAir, IValve vPSCDrain)
[NOT (vPSCAir.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vPSCSolvent, IValve vPSCDrain)
[NOT (vPSCSolvent.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vCanSFill)
[NOT (vCanSAir.IsOpen() AND vCanSFill.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vPSCSolvent)
[NOT (vCanSAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vCanSFill, IValve vCanSToAtomizer)
[NOT (vCanSFill.IsOpen() AND vCanSToAtomizer.IsOpen())]Listing 8.1: Constraints used in the omponent HydrSolventCan asestudy Duerr.8.2.4 End-User SupportThe di�erent semanti assist tools have also been evaluated in the Duerrase study. All �gures will show the tools applied in the routine Fill of thesolvent an implementation HydrSolventCan.First, Figure 8.21 shows the semanti assist popup in the Monao texteditor after the all to the routine Open of subomponent vCanSFill.The seleted omponent is vCanSToAtomizer, the valve that onnets thesolvent an to the other parts of the paint supply system. The only routineproposed is Close, sine opening the valve would violate a onstraint (seeListing 8.1).



140 CHAPTER 8. CASE STUDIES AND EVALUATION

Figure 8.21: Semanti assist popup in the routine Fill of omponent Hy-drSolventCan.Outline highlighting is shown in Figure 8.22. The seletion is between theroutine alls vPSCSolvent.Open and vCanSFill.Open. In the outlineview (right part of the �gure) some routines are disabled (ion is rossed out).The routine Open of the subomponent vPSCAir is disabled, beause a on-straint enfores that the valve vPSCSolvent and vPSCAir are not open atthe same time. Diretly above the seletion, one of the valves is opened, there-fore the other valve may not be opened. The routines vPSCDrain.Open and
vCanSAir.Open are invalid for the same reason.Figures 8.23 and 8.24 show the drag-and-drop assistane in the routine
Fill of the solvent an omponent. In the �rst �gure, the insertion of theall is allowed (a green plus sign appears). In the seond �gure, the allis dragged onto a loation where inserting the routine all would violate aonstraint. Therefore a red ross sign is shown to indiate this violation.Figure 8.25 shows the routine Fill with a semanti error. The valve
vCanSToAtomizer is opened although this violates a onstraint. This se-manti error is highlighted in the visual editor by the red line and a lightbulb. The light bulb signalizes that program repair an �nd a suitable �x forthe error.The program repair results for the semanti error in Figure 8.25 are shownin Figure 8.26. The proposals with the best ranking are to either lose thevalve vCanSFill before the loation of the error, or to delete the all ausing
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Figure 8.22: Semanti Assistane highlighting valid and invalid routines inthe outline.

Figure 8.23: Drag-and-drop assistane allows adding the routine all.the onstraint violation.8.3 Program State Visualization EvaluationIn order to show the e�etiveness of program state visualization, an evalu-ation study with undergraduate mehatronis students was onduted. Thisstudy was on end-user programming and its results were � although very
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Figure 8.24: Drag-and-drop assistane indiates violation of a ontrat ora onstraint.

Figure 8.25: Routine Fill with a semanti error.promising � not statistially signi�ant. We therefore are going to set up aseond study to probe the bene�ts of program state visualization on programunderstanding.8.3.1 Program Visualization Guiding End-User Pro-grammingThe �rst experiment had the goal to identify the bene�t of program visual-ization for end-user programming. It was onduted with 11 undergraduate
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Figure 8.26: Program repair proposals for the semanti error shown inFigure 8.25.students whih were presented a omponent of a bottle sorting appliationby means of a video lip of a mahine simulation. We introdued the studentsto the appliation, Monao-spei� statements, as well as all possible rou-tine alls and onditions. The presentation and introdution was performedin groups of 4 students, suh that the students had equal knowledge of thesystem. The students were then assigned to one of four experiment stations,where they were assigned the task of programming the bottle partition al-gorithm they had seen before. In order to keep the impat of tool handlingand usability as low as possible, an operator trained in using the Monaosystem performed the programming tasks as the students ommanded.Eah group was (without knowledge of the students) separated into twosubgroups, one group being able to use the program visualization, and an-other group that had to do the programming task without using the programvisualization tool. The visualization given to one group of the students isshown in Figure 8.27. It shows the top view of a onveyor belt with two sen-sors (blak dots to the left of the onveyor belt) and two gates whih ouldbe used to stop bottles from being moved by the belt. The belt moves bottlesfrom the bottom end to the upper end of the belt, where they are removed bya robot. The task of the students was to reate a program that ensures thatalways at most one bottle was at the removal position (top of the �gure).



144 CHAPTER 8. CASE STUDIES AND EVALUATIONVisualization x No Visualization ySkills 3 4 1 1 3 2 2.33 2 2 3 2 1 2.00Duration [mins℄ 5 7 2 2 6 3 4.17 5 9 5 3 6 5.60Table 8.1: Results of the �rst experiment

Figure 8.27: Program state visualization used in the �rst experiment.The visualization showed the students the urrent state of the system:whether a ertain gate was opened or losed, whether a bottle was at the �rstsensor (between the gates) or at the seond sensor (at the removal positionat the end of the belt). The students ould use the visualization to thinkabout the next step they wanted the program to perform.Eah student was asked to rate his programming skills on a sale of 1 to5, with 1 being "very good" and 5 being "poor". This way we ould trakthe in�uene of general programming skills on the experiment. We measuredthe time it took the students to implement the program orretly. Table 8.1shows the results of the individual students in this experiment.InterpretationDue to the small sample size, no well-grounded statements an be made.We have seen that program visualization has no signi�ant impat on theprodutivity of programmers who need to reate a program from srath.



8.3. PROGRAM STATE VISUALIZATION EVALUATION 1458.3.2 Program Visualization Helping Program Under-standingA seond detailed experiment is being planned for the next semester, sinethe �rst experiment did not reveal statistially signi�ant data. The experi-ment will researh the bene�t of using program state visualization to under-stand program behavior and �nd bugs. It will be onduted in the onomingsemester with mehatronis students who will be presented a valve systemsimilar to the paint supply system (see Setion 8.2). We will introdue thestudents to the di�erent omponents of the appliation and statements spe-i� to Monao. Next, the students will have to desribe the behavior of aprepared program. We will measure the time it takes the students to fullyexplain the funtionality of the program. As a seond test, we will give asimilar program to the students, now with a small error introdued. One ofthe valves is not opened, and thus the �uid an not �ow through the systemas expeted. We will measure again, how long it takes the students to �ndthe error and �nd a suitable solution to the problem. In both tests, we willalso make notes of misunderstandings and false onlusions.Similar to the �rst experiment, we will ondut the seond experimentwith only one half of the students being able to use the program visualization.Both groups will have the Monao soure ode of the defetive appliationin the visual editor to �nd the error. For this test, we will disable highlightingof ontrat and onstraint violations in the visual editor, otherwise �nding theerror would be trivial. The program visualization for this system is depitedin Figure 8.28.We have already run this experiment with olleagues as test persons andhave seen that the �rst results are very promising. In order to get statisti-ally relevant data, we will run the experiment with a larger sample size ofstudents.
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Figure 8.28: Program state visualization that will be used in the seondexperiment.



Chapter 9Related Work
This hapter ompares di�erent aspets of our work with existing approahesand highlights their di�erenes. Setions 9.1 and 9.2 introdue related workon the veri�ation of all sequenes and safety properties. Setion 9.3 de-sribes work on automati repair of programs based on some spei�ationof orretness. Setion 9.4 ompares work on program visualization to thedesign-time animation approah.9.1 Veri�ation of Call SequenesVeri�ation of all sequene onstraints has been investigated by many re-searhers [OO90,OO92,PV02,HB07,Jin07℄. The systems most similar to thework of this thesis are presented in the following.9.1.1 Ceil/CesarOlender and Osterweil desribe Ceil, a language for the spei�ation of se-quening onstraints in a regular expression dialet (AQRE - anhored, quan-ti�ed, regular expressions) [OO90℄. The language an be used to desribevalid exeution sequenes of routine alls of abstrat data types. Instead ofspeifying the omplete exeution path Ceil expressions desribe portions ofthe valid behavior, therefore allowing partial spei�ation of behavior. Ceilspei�ations �rst desribe whih routine alls they govern. Then a list of147



148 CHAPTER 9. RELATED WORKpartial spei�ations starting and ending at so-alled anhors follows. An-hor routines are written in square brakets, the speial anhors [s] and
[t] desribe the start and the end of the program, respetively.Between two anhors, expressions similar to regular expressions an beused to express valid sequenes of routine alls. The quanti�ers forall and
exists an be used to denote that the following expression needs to beobserved in eah path of the program exeution between the anhors, or inat least one path. The speial symbol ? mathes any routine all governedby this Ceil onstraint. The operator * denotes an arbitrary number of rep-etitions of the preeding subexpression (inluding zero times). The operator
+ denotes repetition of the preeding subexpression (at least one time).Let's look at an example desribing all sequenes of an abstrat data typefor writing to �les. Reasonable onstraints for the available operations (open,
close, write) would desribe that a �le needs to be opened before it anbe written and must be losed before a new �le an be opened. Furthermore,one ould want to ensure that a �le is only opened if it is eventually written.Listing 9.1 lists a Ceil onstraint for suh a �le data type.
{open, close, write} (

[s] forall (open; write*; close)* [t]

and [open] exists ?+ [write] )Listing 9.1: Ceil onstraint for a �le operation routinesCesar [OO92℄ is the onstraint heking tool for Ceil expressions. Cesar'ssequening analysis is based on a state propagation algorithm similar to thestate mapping algorithm desribed in Setion 6.2. Instead of inlining the �owgraph of a allee into the �ow graph of the aller, Cesar keeps the �ow graphof the allee separate and ontinues heking of a loal routine all in the �owgraph of the respetive routine. This approah makes it possible to analyzereursive routine alls of abstrat data types.The implementation of Cesar provided tools to analyze Fortran programs,and support for C and Ada programs was announed. In ontrast to protoolontrats, Ceil provides no means to speify preonditions, postonditionsor invariants to gather information about the abstrat data type. In addition,Ceil onstraints an not operate on multiple instanes of a data type (vari-ables, subomponents), whih is neessary for the omponent-based approahof Monao.



9.1. VERIFICATION OF CALL SEQUENCES 1499.1.2 Behavior ProtoolsPlasil et al. present Behavior Protools [PV02,PJP06,Kof07℄, a language forthe desription of omponent behavior. The language is similar to regularexpressions and desribes the interation of omponents based on the SOFAomponent model.SOFA omponents implement two types of interfaes: required and pro-vided interfaes. The two types of interfaes an be ompared to the ompo-nent boundaries of Monao omponents: subomponent variables spei�edby their interfaes onstitute the required interfaes, while the interfae of theomponent is the provided interfae. The provided interfaes reeive events(routine alls in Monao terms) and the omponent sends events to the re-quired interfaes. The ommuniation struture of the omponents in SOFAallows more than Monaos stritly hierarhial omponent omposition.SOFA allows modeling arbitrary omponent networks and omponent inter-ations. While every Monao omponent an only implement one providedinterfae, SOFA omponents an have multiple provided interfaes.Reently, a new approah alled Threaded Behavior Protools [KP�08℄,was presented. Threaded behavior protools separate the provided interfaedesription (provisions) from the internal behavior whih is again separatedinto reations and threads. Reations and threads make up the atual be-havior of the omponent, possible spread over multiple threads. In ontrastto threaded behavior protools, our work extrats the atual behavior of aomponent from the ode (implementation automaton), while in threadedbehavior protools the implementation is expeted to meet the behavior ofthe reations and threads setions of the protool.Threaded behavior protools support three main use ases:UC1: Corretness Chek Given a omplete omponent appliation, showthat it does not ontain ommuniation errors.UC2: Substitutability Given two omponents, show that one an be re-plaed by the other in a spei� appliation or in any appliation.UC3: Code Conformane Ensure that a omponent implementation on-forms to its behavior spei�ation.



150 CHAPTER 9. RELATED WORKThe work presented in this thesis supports all three use ases. The basiuse ase supported is the ode onformane hek (UC3 ): omponents areheked to ensure they onform to their ontrats with respet to the on-trats of their subomponents. If all omponents of an appliation onformto their respetive ontrats, the omplete omponent hierarhy is orret(UC1 ).UC2 is only partly supported by the heking approah presented inChapter 6: Sine our veri�ation approah heks omponents separately, itis possible to guarantee substitutability of two omponents, if, and only if,they implement the same interfae and thus onform to the same ontrat.9.1.3 Interfae GrammarInterfae grammar [HB07℄ is a spei�ation language based on grammarswhih desribe the valid usage of a Java omponent as a ontext free gram-mar. The grammar an be annotated with semanti ations (Java ode) andis then used to generate omponent stubs. These omponent stubs ontaina table-driven top-down parser whih regards method invoations as inputsymbols. A program using these omponent stubs is then statially heked(using Java Path Finder) to verify that the omponents are used as spei�edby their interfae grammars. The language and tools are used in a frame-work for modular software model heking and have been demonstrated onthe Enterprise JavaBeans Persistene API.Figure 9.1 shows the interfae grammar for a �le omponent. The gram-mar desribes that a �le an be opened and then read or written multipletimes. An open �le an also be losed. Double angle brakets separate se-manti ations from the interfae grammar. These ations are generated intothe resulting omponent stubs.We will take a loser look at the rule closed. The rule only aepts themethod all open, upon whih it invokes the open method on some internal�le objet, returns that it has suessfully invoked open and applies therule opened. If other any routine is alled, while the rule closed is ative,the seond (empty) ase statement triggers, whih does not report suessfulexeution of any method (no return statement).An interfae grammar ompiler generates a Java lass for eah interfae
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class file implements IFile {
<< File f; ... >>;
rule start { apply closed; }
rule closed {

choose {
case ?open(): {
!<< f >>.open();
return open; apply opened;

}
case : { }
}

}
rule opened {

choose {
case ?read(): {
!<< f >>.read();
return read; apply opened;

}
case ?write(): {
!<< f >>.write();
return write; apply opened;

}
case ?close(): {
!<< f >>.close();
return close; apply closed;

}
case : { }
}

}
} Figure 9.1: Interfae grammar desription for a �le omponent.
grammar ontaining a table-driven top-down parser whih handles all methodalls aepted by the grammar. The resulting Java lasses are omponentstubs, whih make sure that the omponent's routines are alled as ditatedby their interfae grammars. A model heker is then able to statially verifythat suh a omponent is used in an orderly manner (the omponent stubsthrow exeptions when an illegal usage is found).The approah of interfae grammar is similar to our approah, in that
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NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())Figure 9.2: Constraint for two valves: they should never be open at thesame time.they also aim at �nding illegal usage of omponents by some lient ode.Their desription of omponent behavior is based on ontext-free grammarsand therefore allows to speify nested method alls. Safety properties, suh asthe onstraints desribed in this work are not part of the interfae grammars.9.2 Cheking Safety PropertiesThe SPIN model heker (Simple Promela Interpreter) [Hol03℄ developed byGerard J. Holzmann uses LTL (linear temporal logi) [CGP99℄ to desribesafety and liveness properties. Similar to the notion of onstraints, safetyproperties in LTL assert that nothing bad happens. If we express the on-straint in Figure 9.2 in LTL we getG¬(vPSCAir.IsOpen∧vPSCSolvent.IsOpen).In essene, only the globally operator is added. Unlike LTL, the onstraintspresented in this thesis do not allow stating liveness properties. In SPIN, pro-grams under veri�ation are modeled in PROMELA (proess meta language)and onsist of proesses whih may ommuniate with eah other.As most model heking tools, SPIN is also aimed at expert programmerswho want to hek safety and liveness properties of their ode. SPIN providesno support for end-user programmers. SPIN is therefore often used as bak-end in veri�ation systems, where the program under veri�ation is translatedto PROMELA ode. Amongst others, behavior protools (see Setion 9.1.2)have been experimentally translated to PROMELA ode and then modelheked using SPIN [Kof07℄.Ball et al. (Mirosoft Researh) developed a stati analysis toolkit alledSLAM [BR01, BBC+06℄ that �nds API usage errors in C programs. Thetoolkit is used in the stati driver veri�er tool (SDV ) to �nd kernel APIusage errors in Windows devie drivers. First, an instrumented version of theode under veri�ation is automatially generated. A tool then abstrats theinstrumented ode into a so-alled Boolean program, onsisting of the orig-inal ontrol �ow onstruts and Boolean variables, only. API rules desribe



9.3. PROGRAM REPAIR 153the temporal safety properties of the API usage as a state mahine. The en-vironment of the devie driver (operating system, kernel APIs) is modeled asa C program invoking the devie driver and simulating the kernel behavior.The instrumented and abstrated ode together with the environmentode is then model heked by a separate tool (BEBOP [BR01℄). If a bug isfound, the abstration is re�ned to �nd the ause of the bug. This abstra-tion/re�nement loop is ontinued, until either the bug is on�rmed or thebug is found to be spurious.Mirosoft Code Contrats [ABF+09℄ provide a language-agnosti way toexpress oding assumptions in .NET programs. The ontrats take the formof preonditions, postonditions, and objet invariants either stated diretlyin the ode or in so-alled interfae ontrats. The ontrats an be statiallyveri�ed, or heked at runtime. In addition, ontrats an be used to gener-ate doumentation. Code ontrats are similar to the pre- and postonditionsand onstraints in the ontrats desribed in this work. Their purpose is tohelp developers of .net appliations and libraries to statially verify ertainproperties of their omponents, as well as to hek the pre- and postondi-tions at runtime. The purpose of our work, however, is to guide end-users inhanging omponent ode based on ontrats engineered by professional de-velopers. Out of all tools presented in this setion, Mirosoft Code Contratshave the best integration into a development environment (Mirosoft VisualStudio 2010 beta).9.3 Program RepairJobstmann et al. [JGB05,SJB05,GBHW05℄ try to �x problems in a programby building a produt of the broken program and the spei�ation. Theyregard this as a game, where a winning strategy desribes a possible programrepair. Program repair is restrited to hanges in assignment statements (onlyhanges on the left hand side of assignments), without making hanges to theprogram logi by hanging the ontrol �ow. Similar to our implementation,they assume a fault loalizer (the state mapping algorithm in our system) to�nd the problems beforehand.Farn et al. [WC08℄ de�ne a program repair based on graphial state-transition spei�ations. They identify four atomi edit operations on the



154 CHAPTER 9. RELATED WORKspei�ations (add and delete states as well as add and delete transitions).The ost of the program repair solely depends on the number of edit opera-tions used. The operations all have equal weight. Our approah, in ontrast,uses hange operations at a higher level where one operation (e.g., add orremove a routine all) results in several hanges to the struture of the modelof the program. Moreover, our hange operations have di�erent weights, thusfavoring ertain hanges over others.Error orreting parsers searh for hanges in an erroneous program toreate a syntatially orret program. Röhrih [Röh80℄ proposes a methodby whih a stak-based parser is able to reover from a syntati error ina program by searhing for a shortest path of the error state to a terminalstate of the parser (emergeny route). This shortest path is then used to �nda math between the next input symbols and the symbols expeted on thestates of the path to the terminal state. Symbols found in the input denoteanhors. If an anhor is found, the symbols in the input sequene preedingthe anhor are removed from the input, and symbols on the shortest path inthe parser's stak automaton are inserted into the input. This approah issimilar to our approah in that it tries to adapt the input sequene (imple-mentation automaton in our system) to math the parser's stak automaton(protool automaton in our system). In distintion to our approah, Röhrihuses an emergeny route to a terminal state to �nd a state where parsing anbe resumed.The problem of program repair is similar to the problem of approximatestring mathing [Nav99℄. In approximate string mathing, a given string (pat-tern) is being mathed to another string whih is equal or similar to thepattern. The metri of loseness (also referred to as edit distane) desribesthe number of mismathing haraters in the string, where a mismath anbe orreted by insertion, removal or substitution of a harater. The editdistane metri most often used is the Levenshtein distane measuring thenumber of edit operations neessary to hange the string suh that it exatlymathes the pattern.The relation of approximate string mathing and program repair is, thatin program repair, the spei�ation forms the pattern whih needs to bemathed in a program. If the pattern does not exatly math, a mistake wasfound. The hanges neessary to repair the program, are the edit operations.While approximate string mathing is able to �nd mathes between a pattern



9.4. PROGRAM VISUALIZATION 155and a string, it is a memoryless strategy whih is not able to perform aknowledge update due to edit operations. In addition, the restrited set ofedit operations is not su�ient for omplex patterns suh as ontrats withpreonditions and postonditions.9.4 Program VisualizationTehniques similar to program visualization have been used in teahing anddebugging algorithms [MS93,BS84℄. These systems interat with a runningprogram by either alling the animation part expliitly from the algorithm, orby binding the values of the variables to properties of the animation. There-fore, it is neessary to atually exeute (and optionally debug) the animatedprogram. Our system, in ontrast, visualizes the states of the omponents ofa program without exeuting the ode, based on the ursor position in theode and state information dedued by our stati analysis.Many other tools for algorithm visualization have been proposed. Theymostly aim at helping students learn how to program. These systems an beategorized into two main ategories [UFVI09℄:Sript-based Systems. In these systems the user needs to manipulate thesoure ode of the program/algorithm being visualized. Calls to thevisualization engine are added at ertain positions. Exeuting the pro-gram then generates a visualization sript, whih shows the steps theprogram has taken (e.g., ANIMAL [RSF00℄).Compiler-based Systems. Compiler-based systems generate algorithm vi-sualizations without hanging the soure ode of the algorithm. Theinteration with the visualization system is added to the program au-tomatially by a ompiler (e.g., Alie [CDP03℄).We see the program visualization tool developed in this work to be in noneof the established ategories. In our system, the soure ode does not needto be hanged, in order to reate a visualization. Furthermore, the ompilerdoes not adapt the program automatially to interat with the visualizationsystem. The visualization is solely based on the state mapping algorithm andits knowledge update steps. We therefore suggest to introdue a new ategoryfor algorithm visualization tools based on stati analysis.
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Chapter 10Summary and Conlusion
This hapter summarizes our approah on using formal methods to guideend-user programming. It presents the main ontributions and reapitulatesthe main ideas of semanti assistane. Finally, this thesis is onluded withan outlook on future work that would make the semanti assistane toolseven more useful.10.1 SummaryThis work presents an approah to support programming in industrial au-tomation by formal veri�ation tehniques. The approah allows speifyingomponent ontrats and onstraints whih must be obeyed by lient pro-grams and veri�es that the lient program does not violate them. Based onthis veri�ation approah, semanti assistane tools have been implementedto support programmers in writing semantially orret programs. The vari-ous semanti assistane tools help programmers to use routine alls in validsequenes, repair programs ontaining semanti errors, and understand alient program by visualizing the state of the omponents at a spei� loa-tion in the ode.We have adopted tehniques from formal interfae spei�ation [dAH01,Mey86℄, model heking [CGP99℄, and knowledge hanges [KM91℄ in thiswork. Formal interfae spei�ation tehniques are used to speify sequen-ing onstraints of omponents, knowledge about state properties of ompo-157



158 CHAPTER 10. SUMMARY AND CONCLUSIONnents, as well as inter-omponent onstraints. Model heking and arti�ialintelligene tehniques are then used to verify that a lient program obeysthe ontrats and onstraints.The approah is based on Monao, a domain-spei� language for ma-hine automation programming. It allows programming the reative part ofan automation program and therefore has language onstruts to express ma-hine operation sequenes, has strong support for dealing with exeptionalsituations and allows parallel ativities. The behavioral model of Monao islose to StateCharts [Har87℄, however, an imperative, Pasal-like style of pro-gramming is used. Most important,Monao allows hierarhial abstrationof ontrol funtionality by a omponent-based approah whih allows build-ing omponents with interfaes and hierarhial struturing of omponents,where upper omponents are in full ontrol over their subordinates.Outline of the ApproahOur programming guidane is based on ontrats and onstraints, whih areformal desriptions of the intended behavior of omponent interfaes (see Fig-ure 10.1). Monao omponents and their ontrats are translated into au-tomata (1),(2). The state mapping algorithm establishes a mapping betweenthe states in the automaton of a Monao omponent and the automataof its subomponents and may �nd ontrat violations (3). In addition, thestates of a omponent are assoiated with knowledge about the states of itssubomponents. This information is derived from postonditions in the on-trats and onditional statements in the omponent implementation. Finally,the state mapping and assoiated knowledge is used to verify onstraints.The annotated implementation automaton (4) is then used in variousend-user support senarios. Contrat or onstraint violations (5) are reportedand highlighted at the respetive loations in the ode editor. Based on theontrats and onstraints, the system an propose valid routine alls for aseleted loation (6). Similarly, a program ontaining a ontrat violation anbe automatially repaired, based on repair strategies suh that the programomplies with the ontrats and onstraints(7). Finally, the system uses thestate mapping results at a spei� loation in the ode to visualize the stateof the subomponents at that loation.
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ContratsConstraints
MonaoCode (1)Impl. Automaton

(2)Protool Automata
(3)State Mapping (4)

AnnotatedImpl. Automaton
(5) SemantiErrors(6) ProposalRepair(7) Visualization(8)

Figure 10.1: Steps in the system for end-user programming guidane.10.2 ContributionsIn the past deade, many veri�ation systems emerged, from general modelhekers like SPIN to spei� devie driver veri�ers like SDV. Still, ativeresearh is going on in this �eld to provide tools to verify programs writtenin general programming languages. To the best of our knowledge, we arethe �rst to base restrited end-user guidane tools on formal methods andveri�ation. The ontributions of this work are therefore as follows:� Contrats allowing to speify the valid all sequenes of routines as wellas guarantees (postonditions) and required onditions (preonditions).� Constraints to express safety properties.� A veri�ation proess whih heks that a lient program obeys on-trats and onstraints.� A knowledge dedution proess whih allows to dedue properties ofomponents ful�lled at partiular ode positions in the lient applia-tions.� Semanti Assistane tools whih propose ode fragments based on on-trats and onstraints and aid in repairing lient programs.� A design-time visualization tool to visualize the state of a system at aposition in the ode and to help end users understand the program.



160 CHAPTER 10. SUMMARY AND CONCLUSION10.3 Future WorkSine our system is implemented as a prototype, there are many features thatwere not implemented but ould help the overall approah to be even moree�etive. This setion lists ideas for future work.� Without hanging the overall approah, adding support for routine pa-rameters and loal variables ould help to get additional informationabout the possible ontrol �ow.� Although the urrent notation of ontrats is su�ient to desribe allpossible situations expressible by the automata, a more readable, pos-sibly graphial notation would ease development of ontrats. A draftof a better notation is shown in Listing C.2 in Appendix C.� Postonditions in the ontrat give guarantees about omponent states.Suh a guarantee holds until it is invalidated by more reent knowledgeor it is retrated. Other types of postonditions in a ontrat would al-low the system to guarantee knowledge until the next WAIT statement,or for a ertain period of time only.� Invariants urrently only desribe invariant knowledge about a singleomponent. There are situations, in whih invariants among severalomponents an be useful to express physial dependenies among dif-ferent omponents.� Similar to systems like WhyLine [KM09℄, we ould extend the know-ledge update to preserve the history of the knowledge. We ould thennot only inform the user whih knowledge holds at a ertain loation,but also give explanations on why partiular propositions hold (post-ondition, retration, ontrol �ow onditions). Suh information wouldease diagnosis of semanti errors.10.4 ConlusionsWe feel that there is a natural evolution from the early steps of writingspei�ations over veri�ation of software systems and debugging to guid-ane tools and program repair. These tools are valuable not only in the



10.4. CONCLUSIONS 161domain of mahine automation, but also in other domains where restritedprogramming by end users is needed, and a similar style of programming isused. The restrited set of features of Monao eased muh of the language-spei� parts of the tools. Yet, it seems possible to employ similar tools inmore general languages like Java and C♯, and reent researh shows �rstresults [HB07,ABF+09℄.
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Appendix AKeplast Case Study Constraints
CONSTRAINT (IScrewCtrl screw, IHeatingCtrl heating)

[NOT (screw.isInFront() AND NOT heating.tempReached())]Listing A.1: Constraints used in the ase study Keplast.

163



164 APPENDIX A. KEPLAST CASE STUDY CONSTRAINTS



Appendix BDuerr Case Study Constraints
// Constraints @ HydrSolventCan

CONSTRAINT (IValve vPSCAir, IValve vPSCSolvent)

[NOT (vPSCAir.IsOpen() AND vPSCSolvent.IsOpen())]

CONSTRAINT (IValve vPSCAir, IValve vPSCDrain)

[NOT (vPSCAir.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vPSCSolvent, IValve vPSCDrain)

[NOT (vPSCSolvent.IsOpen() AND vPSCDrain.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vCanSFill)

[NOT (vCanSAir.IsOpen() AND vCanSFill.IsOpen())]

CONSTRAINT (IValve vCanSAir, IValve vPSCSolvent)

[NOT (vCanSAir.IsOpen() AND vPSCSolvent.IsOpen())]

// Constraints @ SubChannel @ HOSE 1

CONSTRAINT (IValve vHose1Drain, IValve vHose1Air)

[NOT (vHose1Drain.IsOpen() AND vHose1Air.IsOpen())]

CONSTRAINT (IValve vHose1Air, IValve vHose1Color)

[NOT (vHose1Air.IsOpen() AND vHose1Color.IsOpen())]

// SubChannel @ ATOMIZER

CONSTRAINT (IValve vFMR, IValve vReflowAir)

[NOT (vFMR.IsOpen() AND vReflowAir.IsOpen())]

CONSTRAINT (IValve vFMR, IValve vMainSolventAVMR)

[NOT (vFMR.IsOpen() AND vMainSolventAVMR.IsOpen())]

CONSTRAINT (IValve vReflowAir, IValve vRFMRDrain)165
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[NOT (vReflowAir.IsOpen() AND vRFMRDrain.IsOpen())]

CONSTRAINT (IValve vMainSolventAVMR, IValve vRFMRDrain)

[NOT (vMainSolventAVMR.IsOpen()

AND vRFMRDrain.IsOpen())]

// Constraints @ MainChannel

CONSTRAINT (IValve vSolvent, IValve vColor)

[NOT (vSolvent.IsOpen() AND vColor.IsOpen())]

// Constraints @ ColorChanger

CONSTRAINT

(IValve vColGrey, IValve vColBlack, IValve vColRed,

IValve vColBlue, IValve vColGreen, IValve vColBrown,

IValve vColYellow, IValve vColWhite, IValve vColOrange,

IValve vColPink)

[

(vColGrey.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBlack.IsOpen() AND (NOT vColGrey.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBlue.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColRed.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())
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) OR

(vColGreen.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColBrown.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColYellow.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColGrey.IsOpen()) AND (NOT vColWhite.IsOpen()) AND

(NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColWhite.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColGrey.IsOpen()) AND

(NOT vColOrange.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColOrange.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColGrey.IsOpen()) AND (NOT vColPink.IsOpen())

) OR

(vColPink.IsOpen() AND (NOT vColBlack.IsOpen()) AND

(NOT vColBlue.IsOpen()) AND (NOT vColRed.IsOpen()) AND

(NOT vColGreen.IsOpen()) AND (NOT vColBrown.IsOpen()) AND

(NOT vColYellow.IsOpen()) AND (NOT vColWhite.IsOpen())

AND (NOT vColOrange.IsOpen()) AND (NOT vColGrey.IsOpen())

) OR

(NOT vColGrey.IsOpen() AND NOT vColBlack.IsOpen() AND

NOT vColBlue.IsOpen() AND NOT vColRed.IsOpen() AND
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NOT vColGreen.IsOpen() AND NOT vColBrown.IsOpen() AND

NOT vColYellow.IsOpen() AND NOT vColWhite.IsOpen() AND

NOT vColOrange.IsOpen() AND NOT vColPink.IsOpen())

] Listing B.1: Constraints used in the ase study Duerr.



Appendix CEBNF Protool ContratNotation
Listing C.1 lists the grammar of the EBNF protool ontrat notation.
SpecEBNF =

"EBNF" Identifier "=" SpecBlock "." .

SpecBlock = SpecStmts .

SpecStmts = { SpecStmt } .

SpecStmt =

(

RoutineCall

|

"(" SpecStmts

(

{ "|" SpecStmts }

|

{ "||" SpecStmts }

)

")"

|

"[" SpecStmts "]"

|

"{" SpecStmts "}" 169
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)

[ "on" EventCondition SpecStmt ]

.

EventCondition = Identifier .

RoutineCall = Identifier .Listing C.1: EBNF Protool Contrat Notation.Listing C.2 lists a draft of alternative produtions for the grammar ofthe EBNF protool ontrat notation. These alternative produtions allowto state invariants, preonditions, and postonditions.
SpecEBNF =

"EBNF" [ "<" "Invariant" ":" Condition ">" ]

Identifier "=" SpecBlock "." .

RoutineCall = Identifier

{

"<"

("Pre" | "Post" | "Retract")

":" Condition

">"

} .

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing C.2: Draft of alternative RoutineCall and SpecEBNF produ-tions with onditions.



Appendix DDetailed Protool ContratNotation
Listing D.1 lists the grammar of the detailed protool ontrat notation. Thedetailed protool ontrat notation allows speifying pre- and postonditionsas well as initial and invariant onditions.
SpecDetail =

"Interface" Identifier [ Identifier ]

{ "[" "Invariant" ":" Condition "]" } ":"

{

["final"] ["initial"] Identifier { StateCondition }

"="

{

Identifier "." [ Identifier ] ("!"|"?") Identifier

}

"."

} .

StateCondition = "["

("Pre" | "Post" | "Retract") ":" Condition "]" .

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing D.1: Detailed Protool Contrat Notation.171
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Appendix EConstraint Notation
Listing E.1 lists the grammar of the onstraint notation.
Constraint =

"CONSTRAINT"

"("

Identifier Identifier

{ "," Identifier Identifier> }

")"

"[" Condition "]"

.

/* Due to reuse of Monaco condition parser, conditions */

/* are parsed as strings. */

Condition = { ANY } .Listing E.1: Constraint Notation in EBNF.
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